
Modern Service
Networking for Cloud
and Microservices

WHITEPAPER | MODERN SERVICE NETWORKING FOR CLOUD AND MICROSERVICES

2WHITEPAPER | MODERN SERVICE NETWORKING FOR CLOUD AND MICROSERVICES

Contents

Service Discovery for the Cloud Operating Model

Monolithic applications in a static network

Moving to microservices

Containers and cloud: Dynamic IPs

Networking challenges in a dynamic network

Starting with a service registry

Service discovery for east-west traffic

Network automation for north-south traffic

Bridging multiple platforms and clouds

Summary

03

03

05

06

06

08

08

09

10

11

3WHITEPAPER | MODERN SERVICE NETWORKING FOR CLOUD AND MICROSERVICES

Service Discovery for the Cloud Operating Model

Enterprises thriving in the multi-cloud era compete on speed to market. The development team

is taking the cloud-native approach to launch new features faster. Companies are inspired by

successful early adopters, like Netflix and eBay, but they often forget about the new challenges

that come with modern application development and cloud adoption.

The cloud operating model is composed of four distinct layers, mapping to the personas and

functional areas in IT. The challenges for supporting distributed applications at the networking

layer are often one of the most difficult aspects. This white paper will examine the shortcomings

of traditional networking approaches and introduce service discovery, a modern approach that

we consider an essential part of multi-cloud service networking.

Monolithic applications in a static network

For many years, nearly all applications were built with a monolithic architecture. A single

monolithic application contains all the sub-components for all the business functionalities that

an application delivers. A banking app, for example, would include multiple modules for login,

displaying your balance, wire transfers, and deposits. Although these are discrete functions, the

application is packaged and deployed as a single unit.

4WHITEPAPER | MODERN SERVICE NETWORKING FOR CLOUD AND MICROSERVICES

The underlying networking architecture to support monolithic applications has a set of clean

traffic paths. These paths are typically north-south, which means the traffic is going in and out of

the network. A common example would be the traffic between internet users and front-end web

servers. To handle heavy load and improve application availability, incoming requests from users

are routed through a load balancer, which splits the traffic across multiple web UI instances.

Figure 2: A static network topology with load balancers

fronting the database, monolithic applications, and the

web front-end.

Traffic is also routed within the network—this is

called east-west traffic. An example would be,

traffic between application servers and the back-

end database. Legacy monolithic applications

typically connected with these data center

components by hardcoding the IP address of

the database or connecting with another load

balancer fronting the database.

Overall, these traffic paths are well-defined and

relatively static. The communication between

sub-components of a monolithic application is

via an in-memory function call.

Figure 1: A monolithic banking application.

5WHITEPAPER | MODERN SERVICE NETWORKING FOR CLOUD AND MICROSERVICES

Moving to microservices

Monolithic applications are easy to develop, deploy and scale. However, over time an application

gains new features and functionality and requires a larger team to develop. As this team grows

larger, it needs to split into many independent teams who own different pieces of functionality. At

scale, there can be hundreds of developers working on a single code base. This creates immense

challenges around coordinating a release and doing proper testing and Q/A. In many cases,

releases slow down to a quarterly or slower cadence.

As a solution to this problem, many forward-thinking companies have adopted a new application

architecture called “microservices.” Transforming a monolithic application to this architecture

means breaking out its sub-components into loosely-coupled, independent modular services.

Each of these services is owned by independent development teams. Microservices offer a

number of benefits over monolithic software architectures, including:

•	 Fast deployment: Teams can build, test, and deploy each

service independently without being constrained by a single

release cycle. If there is a bug in service A, we can patch

A and redeploy A without having to wait for development

teams B, C, and D to be ready.

•	 Technology flexibility: Each service’s development team

has the freedom to choose different frameworks, languages,

and tools that are best suited for their application. One

team could use Python to develop a new machine learning

service while other teams could keep their existing services

in Java.

•	 Efficient scaling: Properly decoupled services can be scaled

independently. This creates more cost-efficiencies since you

don’t need to scale the whole system, only certain services.

•	 Failure Isolation: Each service is responsible for a small

piece of overall functionality. The whole application is

composed of many individual services. This means if there

is a bug or failure impacting a particular service, the entire

application is not impacted. This allows failures to be more

gracefully tolerated.

Figure 3: A microservices

banking application.

6WHITEPAPER | MODERN SERVICE NETWORKING FOR CLOUD AND MICROSERVICES

Containers and cloud: Dynamic IPs

While we are decomposing applications, these individual services are packaged and deployed

as containers. Containers are generally ephemeral and have a dynamic IP address. They can

start and terminate quickly to scale services up and down. This presents a new challenge: the IP

address of microservices are constantly changing.

Cloud migration further complicates this issue. An organization might move many of their

existing services to a public cloud, but then build new services on a second cloud, and leave

their systems of record on-premises for data sovereignty. The cloud services normally receive

dynamically assigned IP addresses. Once a service instance stops, the cloud IP address can be

recycled and used for a different application. As a result, tracking cloud services and resources as

well as keeping them up to date in a multi-cloud environment becomes much more difficult and

complex.

Networking challenges in a dynamic network

Microservices, containers, and cloud computing have brought about a revolution in development

agility, but it doesn’t come for free. As we are gaining developer efficiency from the distributed

architecture, we are inheriting new operational challenges due to the same distributed nature.

Figure 4: Communication patterns in a

simple microservices application.

In a microservices environment, operators have

to work with hundreds of small services each with

independent deployments and scaling challenges.

These services are no longer compiled into a single

application, and they are not even running on the

same machine. They communicate using APIs over the

network on-premise or in the cloud. This introduces

a challenge of service discovery, namely how

downstream services discovery and route traffic to the

upstream services they depend on.

7WHITEPAPER | MODERN SERVICE NETWORKING FOR CLOUD AND MICROSERVICES

Firstly, adding (or removing) a new service or a new instance of an existing service comes with

a lot of overhead. The traditional ticketing system or manual operation process to update the

load balancer configuration cannot keep up with the speed at which microservices are deployed.

Container platforms can deploy containers in several seconds, while many ticket based processes

take weeks to process changes. Additionally, since each new service type needs its own load

balancer, there would be an expensive proliferation of load balancers that need to be managed

and maintained.

Figure 5: A theoretical dynamic network

topology with each service fronted by load

balancers.

The second challenge is the introduction of single

points of failure all over the system. Even though

we’re running multiple instances of service B for

availability, service A connects to service B through

its load balancer. If we lose that load balancer, all

instances of service B will become unavailable.

This could be mitigated to some extent by adding

redundant load balancers, but this adds additional

cost and more operational complexity.
Figure 6: Despite service B’s redundancy, if the

only load balancer goes down, all instances of

service B are unavailable.

In a traditional approach, every service would be

fronted with a load balancer (physical, virtual, or

cloud depending on the deployment environment).

Downstream services would hard code the address

of the load balancer when routing to the upstream

service. In this way, a load balancer would provide

a naming abstraction to represent a service and be

responsible for routing traffic to available instances

of that service. This approach seems like a logical

extension of standard monolithic networking

architecture, but it introduces a few problems.

The third challenge is the network latency introduced by load balancers. Instead of service A

directly connecting to service B, A connects to a load balancer which then connects to B, and

then any response takes the same path on the way back. This doubles the network latency

for every service-to-service communication. As we adopt microservices, there are many more

network calls required to service a user request and optimization of latency becomes important

to preserve user experience.

8WHITEPAPER | MODERN SERVICE NETWORKING FOR CLOUD AND MICROSERVICES

Starting with a service registry

Instead of using distributed load balancers, microservice networking requires a central service

discovery mechanism to dynamically discover and connect services running on the ephemeral

infrastructure.

Service discovery starts with a centralized service registry, which provides a “directory” of what

services are running, where they are, and their current health status. A light-weight service

discovery client is running along with a service instance, allowing this service instance to

programmatically register and deregister with the central registry. The system will monitor a

service’s health status so operators can triage the availability of each instance.

For organizations at the beginning of their cloud

journey or microservice adoption, finding a way to

track and manage the explosion of services across

multiple subnets, data centers, and cloud regions

is their first hurdle. The traditional process,

which often takes the form of spreadsheets, load

balancer dashboards, or configuration files, is

disjointed and static. Choosing a technology that

provides a central service registry is the first step

in clearing that hurdle, providing a foundation

for automation and more advanced microservice

networking solutions to build upon.

Service discovery for east-west traffic

As organizations scale their microservices, the traffic between services grows exponentially

and the traffic path becomes more dynamic. Load balancers are not a scalable approach, as we

illustrated prior to this section. However, service discovery provides a more elegant approach to

managing east-west traffic.

With a service discovery solution in place, all service instances get registered as part of the central

service registry the moment they are deployed. If service A needs to communicate with service

B, it queries the service registry which returns the network location for all available instances of

service B. Typically, this is done without code modification using DNS. More advanced use cases

are enabled by using the rich REST API.

Figure 7: The service health status

dashboard for HashiCorp Consul.

9WHITEPAPER | MODERN SERVICE NETWORKING FOR CLOUD AND MICROSERVICES

This solution can also perform load balancing by randomly sending traffic to different instances.

In this approach, the routing and the load balancing is fully distributed which allows the system to

scale into a very large environment.

Within a single data center or cloud region, if one of the service instances dies, the registry will

avoid returning its address to trigger an automatic failover to other healthy instances. Across

data centers, organizations can define centralized failover policies with service discovery to

automatically route traffic to service instances that are running in different geo-locations or cloud

regions, meaning they no longer have to hardcode this logic into applications or manage other

failover appliances.

Additionally, service discovery coupled with

sidecar proxies or embedded client libraries

can enable more advanced application‑specific

traffic management schemes.

Figure 8: Once a service or resource is automatically

registered in the service registry, it can discover other

services that want to use that resource or service and

connect them.

Network automation for north-south traffic

Despite the explosion of east-west traffic, it is still desirable to have a dedicated load balancer or

API gateway at the edge where all the north-south traffic flows into the system.

In microservice architectures, a web frontend service could change dynamically because of

autoscaling, failures, and updates. Every time this happens, the load balancer needs to be

reconfigured to update its back-end address pool, which is often a painful, time-consuming, and

error-prone process.

With service discovery, the service registry provides a “subscription” service to automate these

network operations. Developers can now auto-scale services, and the newly added or removed

service instances will automatically “publish” their location information with the service registry. The

load balancer can subscribe to service changes from the service registry (by using tools like Consul

Template or native integration). This enables a Publish/Subscribe style of automation that can

handle highly dynamic infrastructure.

10WHITEPAPER | MODERN SERVICE NETWORKING FOR CLOUD AND MICROSERVICES

Any change to a service will trigger a new configuration getting generated and reloaded to the load

balancer dynamically. The traffic can be routed to new service instances instantly without manual

intervention. The same approach applies to firewalls and other critical network middleware as well.

This publish/subscribe model accelerates the productivity of the network and IT operation teams by

decoupling their workflow from IP addresses.

Bridging multiple platforms and clouds

Microservice architectures and cloud infrastructure gives development teams the freedom to

choose different runtime platforms and cloud services that are best suited to their applications.

However, this could lead to multiple islands of resources where the dynamic service networking

is constrained within a single platform or a particular cloud. For example, a service deployed in a

Kubernetes cluster cannot dynamically discover the database running on virtual machines outside

the Kubernetes environment.

Another example could be that a cloud service has to hardcode the IP addresses of services

running in a private datacenter. These challenges arise when companies need to support cross-

cluster/platform/cloud communications. To enable services to discover and interact with each other

regardless of where they reside, we need a service discovery mechanism that can be universally

deployed. It needs to provide a unified service registry that is not platform or cloud-specific and can

automatically sync and aggregate service catalogs across a heterogeneous environment.

Figure 9: A dynamic network topology with HashiCorp

Consul handling east-west traffic and service-to-service

communication, while a load balancer balances north-south

traffic.

As we scale out the microservice architecture,

companies may deploy API gateways at the edge.

An API gateway provides a single, unified API entry

point across one or more internal APIs. It hides the

complexity of internal microservices composition

from external users. To send the API requests to

internal services dynamically, it will need to integrate

with service discovery to locate and route to the

proper end services.

11WHITEPAPER | MODERN SERVICE NETWORKING FOR CLOUD AND MICROSERVICES

Summary

Service discovery has become an established core component of microservice and multi-

cloud service networking. It acts as the brain of your networking and monitoring operations,

simplifying them as your service portfolio expands. There are many service discovery tools

to solve this problem in different ways. HashiCorp Consul provides comprehensive service

discovery capabilities, which offer not only a service registry, but also distributed health checks,

security, high availability, scalability, multi-datacenter/cloud, and universal support on bare metal,

virtualized, and containerized environments, including all major operating systems.

Consul has been successful in accelerating companies’ cloud and microservices adoption

journeys. It provides a stable, flexible, and battle-tested solution for service discovery with

a central registry of services provides application visibility, dynamic routing and network

automation. Instead of having applications adapt to the network infrastructure, service discovery

makes the network serve the needs of the application, eliminating slow manual processes

that were required to keep networks and critical middleware up to date, and replacing those

processes with self-service automation.specific and can automatically sync and aggregate service

catalogs across a heterogeneous environment.

