

Cloud Data Management
Written by: Dave Fowler, Matt David, Tim Miller, Tracy Chow, Jaime Flores-Lovo, Aaron Aihini,
Kostas Pardalis
Reviewed by: Twange Kasoma

Table of Contents

Introduction

Introduction - The 4 Stages of Data Sophistication
About this Book
What Stage are You at?

Stage 1 - Source

Starting with Source Data
Source Data Connections
Source Data Best Practices

Stage 2 - Lake

Why Build a Data Lake
What Engine to Use For a Data Lake
Extract and Load a Lake
Data Lake Security
Data Lake Maintenance

Stage 3 - Warehouse

Why Build a Data Warehouse
Data Warehouse Architecture
Data Warehouse Security
Data Warehouse Implementation
Defining a Data Governor
Data Warehouse Maintenance

Stage 4 - Mart

Why Build Data Marts
Data Mart Implementation
Data Mart Maintenance

Extras

Evaluating Data Stack Technologies
ETL vs ELT
Acknowledgments & Contributions

https://dataschool.com/people/dave/
https://dataschool.com/people/matt/
https://dataschool.com/people/tim/
https://dataschool.com/people/tracy-chow/
https://dataschool.com/people/jaime-flores-lovo/
https://dataschool.com/people/aaron-aihini/
https://dataschool.com/people/kostas-pardalis/
https://dataschool.com/people/twange-kasoma/

Introduction

Introduction - The 4 Stages of Data
Sophistication
Modern companies run on and compete with data. Historically businesses had all of the
information they needed walking in and out of their store every day. When customers had
requests, frustrations, or buying patterns - the owners and employees were there to ask about
them and to directly observe trends.

Over time, companies scaled and most people now work for larger, distributed organizations.
We’ve grown from single shop businesses, to having many locations, and even to having no
location at all. The result is that decision makers no longer have direct access to each
customer, and must increasingly rely on their data to improve and compete.

Companies today are quite good at collecting data - but still very poor at organizing and
learning from it. Setting up a proper Data Governance organization, workflow, tools, and an
effective data stack are essential tasks if a business wants to gain from it’s information.

This book is for organizations of all sizes that want to build the right data stack for them - one
that is both practical and enables them to be as informed as possible. It is a continually
improving community driven book teaching modern data governance techniques for
companies at different levels of data sophistication. In it we will progresses from the starting
setup of a new startup to a mature data driven enterprise covering architectures, tools, team
organizations, common pitfalls and best practices as data needs expand.

The structure and original chapters of this book were written by the leadership and Data
Advisor teams at Chartio, sharing our experiences working with hundreds of companies over
the past decade. Here we’ve compiled our learnings and open sourced them in a free, open
book.

The 4 Stages of Data Sophistication

From our experience working with so many organizations we recognized four distinct stages of
data sophistication that successful companies go through. These stages happen to be tied to a
new piece of the data stack that is needed at each stage, and so we have named these stages
after those pieces.

This book is organized in sections covering each of these 4 sequential:

1. Source
2. Lake
3. Warehouse
4. Mart

Each vertical stage pictured is a valid stack to operate from, depending on your resources, size,
importance and needs of data within your organization. Each has unique benefits, pitfalls and
best practices that we’ll cover stage by stage.

Your company may not yet need the entirety of this book, but as a growing company’s data
needs expand, it will be incredibly valuable — and perhaps pivotal — to advance all the way
through each of these stages to the Mart stage.

We’ll start with an overview of each:

Stage 1. Sources

When you start working with data, you may only have a few sources of interest. Two common
early sources are Google Analytics and your application data in whatever PostgreSQL or MySQL
database your product runs on. If only a few people at your company need to work with these
sources, you might set them up with direct access; it’s more simple and agile for them to just
work with the data directly.

Stage 2. Lake

As you start to rely on more data sources, and more frequently need to blend your data, you’ll
want to build out a Data Lake—a spot for all of your data to exist together in a unified,
performant source.

Especially when you need to work with data from applications like Salesforce, Hubspot, Jira,
and Zendesk, you’ll want to create a single home for this data so you can access all of it
together and with a single SQL syntax, rather than many different APIs.

Stage 3. Warehouse (Single Source of Truth)

In the Lake stage, as you bring in more people to work with the data, you have to explain to
them the oddities of each schema, what data is where, and what special criteria you need to
filter by in each of the tables to get the proper results. This becomes a lot of work, and will
leave you frequently fighting integrity issues. Eventually, you’ll want to start cleaning your
data into a single, clean source of truth.

https://dataschool.com/data-governance/source-data-tools/
https://dataschool.com/data-governance/why-build-a-data-lake/
https://dataschool.com/data-governance/why-build-a-data-warehouse/

This stage—creating a data Warehouse—has historically been quite a nightmare, and there are
many books written on how best to model your data for analytical processing. But these days
it’s not that hard—and will not only spare you from having to explain all of your schemas’
oddities to new team members, but will also save you as an individual time in having to repeat,
edit and maintain your own messy queries.

Stage 4. Marts

When you have clean data and a good BI product on top of it, you should start noticing that
many people within your company are able to answer their own questions, and more and more
people are getting involved. This is great news: your company is getting increasingly informed,
and the business and productivity results should be showing. You’re also less worried about
integrity issues because you’ve modeled the data, and you’re continually maintaining it to be a
clean, clear source of truth.

Eventually, however, you’ll have hundreds of tables in that source of truth, and users will
become overwhelmed when trying to find the data that’s relevant to them. You may also
discover that, depending on the team, department, or use case, different people want to use
the same data structured in different ways. For these reasons, you’ll want to start rolling out
Data Marts.

Data Marts are smaller, more specific sources of truth for a team or topic of investigation. For
example, the Sales team may only need 12 or so tables from the main Warehouse, while the
Marketing team may need 20 tables—some of them the same, but some different.

https://dataschool.com/data-governance/why-build-data-marts/

About this Book

Who this book is for

This book is for anyone looking to setup an effective, modern (typically cloud-based) data stack
that will truly enable a company to explore and understand the data it collects to have high
visibility into their business. It’s for people who value their data and realize that a company
that is truly informed by their data has significant competitive advantages.

It applies to teams setting up either Centralized or Democratized data workflows with an
encouraging bias toward Democratized.

Who this is NOT for

At the moment, this book is not focused on the extreme end of what you might call Big Data. As
a general guideline for where that might cut off, we’ll call that teams collecting more than
100GB of data per day. Those teams may still find this book generally useful (especially for the
majority of their tables that are usually significantly less than the event streams), as long as
they appreciate that the details and recommendations for implementing a data stack at that
scale aren’t covered here.

Our eventual goal is to create “Big Data” section inserts throughout the book that will go into
the details that those working with enormous datasets will also have to know, while not
cluttering the book for the 99% use case.

This book is also not dealing with AI workflows, or realtime operational use cases. It is purely to
build and maintain a reporting and analysis data stack.

Lastly, this book is not written for long time data experts, vendors and thought leaders. If it were,
we would go into more detail on the pros and cons of each choice and defend why we chose
each recommendation. Doing so would greatly clutter the book ruining the experience for
those who really need this book and are trying to understand a clear path to a quality data
stack.

We instead encourage continued discourse on what constitutes modern and quality data
governance practices on blogs, twitter and our Data School slack channel.

How to read this book

The book is structured in 4 stages of sophistication: Sources, Lake, Warehouse and Mart. This is
the journey we see companies go through as they grow and their data needs become more
sophisticated. Each section starts with a quick excerpt describing when your company may be
a good fit for staying at that stage, and when your company should move on to the next stage.

If you find you’re already at a later stage, you may have a data lake already setup for instance,
you may want to skip ahead to that section. Note though that many best practices are
discussed at each stage and are brought up in the stage where they first start to be relevant. It
will be assumed that these are already known at the later stages and they won’t be repeated. So
it may benefit you to at least skim those earlier stages even if you and your company are
further ahead.

https://dataschool.com/data-governance/democratized-or-centralized/
https://join.slack.com/t/thedataschool/shared_invite/enQtNjAyMTM1MTk1MzQ4LWY4YWI1YzBkOTAwZmQ4Y2Q4N2U4MWE1Njg3OWJhNmU2NGRiYTI0MDEzMmQ1MzllMTczMGFhMTEwZTBlYmQxYjY
https://dataschool.com/data-governance/source-data-tools/
https://dataschool.com/data-governance/why-build-a-data-lake/
https://dataschool.com/data-governance/why-build-a-data-warehouse/
https://dataschool.com/data-governance/why-build-data-marts/

Disclaimers

While the goal of this book is to be community driven, the initial structure and version was
written mostly by the team at Chartio. We don’t pretend to have an unbiased view of the
world. We’ve made attempts to use and mention Chartio sparingly - but where BI examples are
called for we’ve used our product as the example. We’ve also made attempts to be open about
our biases - but we may not have caught everything, please let us know if you see any
blindspots in the book.

That our experience for this book has been gained by working with well over a thousand
modern companies over almost decade, is a great advantage. That the majority of these
experiences are working with our own customers, setting up and growing data stacks to be
specifically used with our unique product has undoubtedly left some blind spots in the book
for those using other products.

Influences

The main books on setting up data stacks are over a decade old, most being pre-cloud and
especially pre C-Store warehouses. The state of modern data governance today is largely self-
taught and unguided, a reality which is what lead us to write this book.

This book, starting from Chartio, is primarily influenced by first hand experiences and directly
working with hundreds of modern cloud-based customers over a decade in BI. The second
largest influence is working with our many vendor and consulting partners. Third, are the
many community shared posts from a lot of different companies on blogs like Tristan Handy’s
and in data slack channels. And lastly, it’s worth noting some classic books that have
influenced (sometimes negatively but mostly positively) the data community.

Agile Data Warehouse Design by Lawrence Corr
The Data Warehouse Toolkit by Ralph Kimball
Information Dashboard Design by Stephen Few - (my review here)

How this book was written

Community driven books aren’t that common and we found it was important to setup some
guidelines in writing this book:

Single author voice/experience - To avoid the potentially jarring and unnecessary context
switches of changing authors each chapter and even throughout each chapter an attempt is
made to speak with a single narrator.

Heavily edited - To keep that voice and a flow to the book, it undergoes continually heavy
edits. At this point it is still a bit chunky and we’re working continually to improve that. We’d
love any help with that as you read through (see How to contribute).

No new vocabulary - There is already a lot of jargon in the data world, often created by very
talented vendor marketing teams. We try to stick with the most common and simple words
here that are already in use.

Stay modern - There are a lot of books for the old way, on old stacks, to work with data. We’re
defining the current best practices here so we just explain those and forget about the past. In a
few cases where it is beneficial to talk about a modern change like ETL moving to ELT we
simply teach the ELT in the book and have a chapter in the extras section discussing the
choice.

Share examples - Right now this book is fairly light on specific examples. We’d love to add
more as we know this is one of the most effective ways of learning. If you have stories to share
- do reach out.

It’s okay to have an opinion - Almost every part of this book could be contentious to
someone, in some use case, or to some vendor. In writing this book it is tempting to bring up
the caveats everywhere and write what would ultimately be a very defensive and overly
explained book. This would be bad and a bummer to read and way less useful for people
reading this book for the advice. Where we have a strong opinion we don’t argue it, we just go
with it. Where we think the user has a legitimate choice to make - we pose those options.

Stay out of the weeds - This book is intended to be a broad overview and general guideline of
how to setup a data stack. We intentionally don’t get into the weeds of setting up a Redshift
instance, or how to use various BI products. That would clutter the already quite extensive
book and repeat a lot of work that is already on the internet.

Stay general - Every company and data use case is a unique snowflake. This book tries to write
to the needs of the 95+% of snowflakes. That last 5% is a long tail, and really impossible to

https://chartio.com/?__hstc=113363352.2f70acb8b29adfc42b5a8865ee447307.1575497445428.1576797445226.1576799532545.14&__hssc=113363352.8.1576799532545&__hsfp=2046095835
https://chartio.com/customers/?__hstc=113363352.2f70acb8b29adfc42b5a8865ee447307.1575497445428.1576797445226.1576799532545.14&__hssc=113363352.8.1576799532545&__hsfp=2046095835
https://chartio.com/customers/?__hstc=113363352.2f70acb8b29adfc42b5a8865ee447307.1575497445428.1576797445226.1576799532545.14&__hssc=113363352.8.1576799532545&__hsfp=2046095835
https://thinkgrowth.org/the-startup-founders-guide-to-analytics-1d2176f20ac1
https://www.amazon.com/Agile-Data-Warehouse-Design-Collaborative/dp/0956817203/
https://www.amazon.com/Data-Warehouse-Toolkit-Definitive-Dimensional/dp/1118530802/
https://www.amazon.com/Information-Dashboard-Design-At-Glance/dp/1938377001/
https://www.perceptualedge.com/about.php
https://chartio.com/blog/informationdashboarddesign/?__hstc=113363352.2f70acb8b29adfc42b5a8865ee447307.1575497445428.1576797445226.1576799532545.14&__hssc=113363352.8.1576799532545&__hsfp=2046095835
https://dataschool.com/data-governance/etl-vs-elt/
mailto:mdavid@dataschool.com

cover. Doing so would incredibly clutter the book. Here we stay general and expect readers to
be confident enough to deviate from our recommendations when they don’t fit them.

How to contribute

This is an open, community driven book created by many different people. It is hosted on
github, and we welcome any and all contributions. Our goal is to continually make this book
better and kept modern. We would like to continually expand it, like a wiki, to cover more
topics, go more in depth, share more real company examples, and be better reviewed and
edited.

Few are complete “experts” in all of the areas of modern data governance, and the landscape is
changing all of the time. If you have a story to share, or a chapter you think is missing, or a
new idea - email us or create a pull request with the edits on our github repo.

Even if you don’t know what specifically to share, but you don’t mind sharing your story -
please reach out as we are particularly interested in adding specific examples from specific
companies as they can be the most powerful method of learning.

https://github.com/chartio/dataschool
mailto:mdavid@dataschool.com
https://github.com/chartio/dataschool

What Stage are You at?
Here is a quick guide to finding what stage your team is at. Use the links to jump to that section
or view each stage in succession to learn about applying data governance practices at any
level.

Stage 1 - Source

Right for you if:

You have a small team with only a few people using data
You have minimal data needs at the moment
You only have data in a few small sources
The only people who need to make new visuals are fairly technical

You’ve outgrown if:

You have data you need access to in multiple places/applications
You need unique or combined charts/dashboards for cloud application sources like
Salesforce
More than just a few people need access to this data
You’re struggling with performance issues
You have a set of data that’s getting too big for a transactional database
Non-technical users need to create their own charts

Stage 2 - Lake

Right for you if:

You need unique or combined charts/dashboards for cloud application sources like
Salesforce.
Your charts and dashboards will be created by a core set of people who will all be able to
learn the ins and outs of the structure of the messy data.
You’re intimidated by data modeling (but just don’t be - that’s why we have this book).
You cannot spare the time for even light data modeling and are okay, for now, with the
technical debt you’re taking on.
You have large sets of data and need more performant queries.

You’ve outgrown if:

More than a few people are going to be working with this dataset.
You want a clean source of truth of your company.
You don’t like fighting with integrity issues.
You need to separate the structure of the data from the always changing transactional
sources.

https://dataschool.com/data-governance/source-data-tools/
https://dataschool.com/data-governance/why-build-a-data-lake/

You Don’t like Repeating Yourself (DRY)

Stage 3 - Warehouse

Right for you if:

More than a few people are going to be working with this dataset
You want a clean source of truth of your company
You don’t like fighting integrity issues
You need to separate the structure of the data from the always changing transactional
sources.
You Don’t like Repeating Yourself (DRY)

You’ve outgrown if:

You want to get democratized - and enable others in your company to explore and
understand data themselves
You’re prepared to teach and enable business users in your company - hopefully using
the many resources of the Data School
You have projects that require different formats of the source of truth for easier use
Having truly informed employees is important to your company’s competitive success

Stage 4 - Mart

Right for you if:

You want to get democratized and enable others in your company to explore and
understand data themselves
You’re prepared to teach and enable business users in your company - hopefully using
the many resources of The Data School
You have projects that require different formats of the source of truth for easier use
Having truly informed employees is important to your company’s competitive success

You’ve outgrown this stage if:

You can’t really! You can make any number of marts, and even put leveling in your marts
if you’d like. Implementing this stage will result in a complete, well architected and
governed stack that will continually evolve and support your informed competitive
company.

https://dataschool.com/data-governance/why-build-a-data-warehouse/
https://dataschool.com/data-governance/why-build-data-marts/
https://dataschool.com/

Stage 1 - Source

Starting with Source Data
Modern businesses generate tons of data. Product information, customer information, app
performance, marketing expenditures, etc. You need to start organizing and analyzing data in
order to run your business effectively. At the beginning of a business or while a business
remains small, it is sufficient to work with data from production databases, product APIs, and
financials directly from their original sources.

This stage is ideal for new companies or teams with minimal data needs. It is inexpensive and
relatively easy to tool, implement, and maintain. It is sometimes exciting to build out a
sophisticated data stack, but be sure to start here and check that it satisfies your needs before
moving on; over-engineering is a costly mistake.

This stage is right for you if

You have a small team with only a few people using data
You have minimal data needs at the moment
You only have data in a few small sources
The only people who need to make new visuals are fairly technical

You’ve outgrown this stage if

You have data you need access to in multiple places/applications
You need unique or combined charts/dashboards for cloud application sources like
Salesforce
More than just a few people need access to this data
You’re struggling with performance issues
You have a set of data that’s getting too big for a transactional database
Non-technical users need to create their own charts

Tools to Analyze Source Data

Data will live in many different places but the methods to analyze them boil down to
Application Dashboards, Excel, SQL IDE, Cloud dashboarding tools, Business Intelligence (BI).

Application Dashboards

Many modern SaaS applications come built with the same set of fixed dashboards and
visualizations to showcase the data they are capturing. These charts are highly tuned to
specific use cases and can be quite informative - and maybe all you really need. Some, like
Salesforce, even have customizable chart and dashboard creators built-in for high flexibility.
These can take you a long way, especially if you don’t need to see this data in combination with
other data.

These are also usually well supported by the vendor’s support staff should you have any
questions or extra data needs.

Excel

Many of the applications you are using will allow you to export some of your data into CSV
formatted files. You can take this data and open it in Excel to analyze it. While this is an
effective way to expand the questions you can ask of the data it is fairly manual and will need
to be updated with new data often.

SQL IDE

For data sources such as your production database, you can query it directly from the
command line but this can get messy and hard to keep track of queries and results. We suggest
setting up an IDE such as PG admin to better handle querying data within a Schema.

Cloud dashboarding tools

Tools like Geckoboard or Grow allow you to bring in data from cloud applications via APIs to
visualize data in simple ways. This allows you to combine data from multiple places into a
single dashboard, with simple visualizations to be viewed.

They often come with some nice default dashboards set up automatically for you, and can look
great and be great for showing on TVs around your office, keeping teams aware of what’s going
on. They will be limited in the ease and possibilities of their customizations.

Business Intelligence

For the most power in working with source data, use a flexible self-service Business
Intelligence (BI) solution. For this stage be sure to choose an agile product, that allows direct
SQL queries when necessary and ideally the ability to connect to and blend data from multiple
sources. Those features will be necessary as your data hasn’t been consolidated into a single
source yet, nor has it been organized in a clean enough way to not need occasional power of a
complex SQL query. We’re obviously biased, but Chartio is a great choice here.

Summary

Every business has access to data, you need to find how best to view it and analyze it to
improve your business. While you can use Application Dashboards, Excel, SQL IDE, or Cloud
dashboarding tools; We recommend using a self serve Business Intelligence product to work
with a variety of sources at once and be able to write SQL against your database.

Source Data Connections
When a business is getting started with data, people are analyzing it in live systems. While this
is ok for tools like Salesforce or Google Analytics, we need to take separate precautions for data
in a database.

Database Connections

To use any source data in a database you’ll want to create:

1. Read-only Access Users (be careful)
2. Read-only Replica

Read-Only User

Create and use a read-only user account to analyze data on your production database. This will
prevent users from accidentally making any updates to the data during your analysis, granted
this is unlikely but is still a good precaution. It also makes it possible to grant other people
access for analysis purposes and guard against their errors.

This functionality exists across database providers. However this will effect your app’s
performance so it is best to separate your analytics from your application.

Read-Only Replica

To query the data without impacting the performance of your application, create a read-only
replica of the production database. This creates a copy of your data in a new database which
can be queried without concern.

While creating a read-only replica is easy if you’re using cloud providers with hosted databases
like RDS, it can be hard on other platforms.

These databases may double the cost of your database spend, but they remove the risk of an
analytic query affecting your application.

Summary

Even small teams should set up permissions to analyze data:

1. Create Read-Only Users for analyzing data in a database (be careful of impacting the apps
performance)

2. Create a Read-Only Replica database to perform analytical queries while removing the
performance impacts to the production database.

https://aws.amazon.com/rds/details/read-replicas/

Source Data Best Practices
If you do get to the stage where you are utilizing a SQL-based BI tool to blend and analyze your
data, you should be aware of some helpful best practices. At this stage, with few people
exploring the data, it is not recommended to spend a lot of time doing modeling or clean up.
However, the following agile best practices will prove helpful.

Keep a complexity wiki page

Instead, keep a document or wiki page with warnings about known complexities in the data so
that you and others who are training-up can reference and share knowledge. Some example
things to keep track of are:

Descriptions of poorly named columns and tables
Columns with nulls or largely useless data
Business logic
Complex or confusing join paths
Old or unused columns and tables

Snippet Dictionary

Another useful document to keep is a dictionary of base queries or snippets for common
metrics. When working with data that hasn’t been modeled yet, you end up having to repeat a
lot of the same filters over and over again. It’s helpful to be able to grab those easily when
needed, rather than re-create them each time.

These can be stored on a wiki, .sql file, or even as a dashboard of these queries saved as charts.
With the right BI product, the dashboard method is ideal, as these snippets are rendered as
starter charts that can be easily duplicated and adjusted.

Along with the snippets, it is a best practice to add comments describing how the metric was
calculated. These snippets and comments will be a starting point for data models at the
Warehouse stage of data sophistication.

BI Layer Meta Modeling

Agile BI products will allow you to do some light modeling of the data at the BI layer. In Chartio
for instance, there is a Schema Editor that enables you to quickly rename fields, hide columns,
specify join paths, and create custom columns or tables. Time here can be well spent, but if
you’re doing too much of it, consider moving all the way forward to the Warehouse stage
where your efforts will be more universally applied.

https://dataschool.com/data-governance/why-build-a-data-warehouse/

If you’re using Tableau, they have a feature called Data Interpreter that will do this as well.

Visual, Drag & Drop Exploration

In addition to SQL access, some BI products with drag and drop data explorers such as Tableau
Desktop or Chartio’s Visual SQL will handle writing the SQL for you. Generally exploring data
visually is much faster and more intuitive than writing raw SQL. Visual interfaces will handle
changing data format strings, join paths, new groupings, unique dialects, etc. which will
automatically you a lot of googling and debugging.

Especially at this source stage, you may be dealing with sources in multiple SQL dialects, and a
few different APIs. Remembering the syntaxes for all of these sources is just not realistic. One
of the largest benefits of these visual interfaces is that they operate in the same way,
regardless of the source, and write the correctly formed SQL for you.

These interfaces will be even more useful on top of clean/modeled data in the warehouse and
mart stage where you’ll enable more people in your company to explore data and answer

questions on their own.

Double Check Results

Whenever you are producing visualizations, unexpected or null values can make your analysis
incorrect. Always do a quick review of the raw data by sorting each field to see if you need to
remove, ignore, or update nulls/outliers so that your analysis is correct.

Read this post on Finding Outliers with SQL

Keep short Dashboards

We’ve noticed that people have a tendency to keep adding more and more charts to existing
dashboards. We get it, when you’re finding one insight at a time, it never feels like the right
time to make a totally new dashboard. The result however is that you end up with really long,
disorganized dashboards that run queries for each chart each time.

With a long dashboard, simply checking in on your dashboard to get the latest on one or two of
your key charts is going to kick off hundreds of queries. We’ve written more regarding the best
practices of keeping short dashboards here. In short, though, it’s best to organize them in
smaller groups and create quick links between them.

https://dataschool.com/how-to-teach-people-sql/how-to-find-outliers-with-sql/
https://chartio.com/blog/best-practice-keep-shorter-dashboards/?__hstc=113363352.2f70acb8b29adfc42b5a8865ee447307.1575497445428.1576797445226.1576799532545.14&__hssc=113363352.8.1576799532545&__hsfp=2046095835

Design before building

Another common pitfall is starting a dashboard by exploring data first. When you do this, you
(while exploring) end up with a collection of what you thought were interesting facts but are in
reality probably quite useless in daily monitoring. We’ve written a whole other book on this
pitfall entitled How to Design a Dashboard.

In short - when creating key dashboards that you’ll be continually monitoring, first spend
some time with pen and paper outlining exactly what you want to see and how. It will save you
a lot of time and result in a considerably more useful dashboard.

Summary

Analyzing source data can be tricky since it has not been cleaned or modeled. That said, these
best practices make it easy

Keep a short, regularly updated snippet dictionary
Use BI products to overcome data issues such as weird field names and complex joins
Double check the data before visualization
Keep shorter dashboards
Design dashboards with pen and paper first
Keep an eye on query performance if you are hitting the production database

Lastly, you should start exploring tools to pipe-in multiple sources of data that are not handled
by your SQL-based BI tool to build your Data Lake.

https://dataschool.com/how-to-design-a-dashboard/
https://dataschool.com/how-to-design-a-dashboard/

Stage 2 - Lake

Why Build a Data Lake

What is a Data Lake?

A Data Lake is a storage repository of multiple sources of raw data in a single location. In the
cloud these are typically stored in cloud c-store data warehouses or in S3 buckets. The data can
be in a variety of formats and can be structured, semi-structured, unstructured, or even
binary.

The term Data Lake, after oil lakes (pre-refinery oil), was created to contrast the term Data
Mart which described orderly, siloed, and refined data. Having all the data in one place made it
easier to work with large data sets and start gaining insights earlier in the data modeling
process.

This stage is right for you if:

You need unique or combined charts/dashboards for cloud application sources like
Salesforce.
Your charts and dashboards will be created by a core set of people who will all be able to
learn the ins and outs of the structure of the messy data.
You’re intimidated by data modeling (but just don’t be - that’s why we have this book).
You cannot spare the time for even light data modeling and are okay, for now, with the
technical debt you’re taking on.
You have large sets of data and need more performant queries.

You’ve outgrown this stage if:

More than a few people are going to be working with this dataset.
You want a clean source of truth about your company.
You don’t like fighting with integrity issues.
You need to separate the structure of the data from the always-changing transactional
sources.
You Don’t like Repeating Yourself (DRY)

Top 4 reasons to build a Data Lake

1) It’s unifying

As your data needs expand it becomes harder and harder to work with data kept in multiple
different silos. It may make sense from a product perspective for your traffic data to be in
Google Analytics, your sales records to be in Salesforce and your trial engagement data to be in
some database. However, when you need to analyze your funnel and attribution models you
need them all together.

In the source stage, we discussed blending options, but because blends load all pre-join results
into the BI product these are extremely limited in how much data can be joined and are not a
scalable solution.

In a Data Lake, all data can be combined so it can be analyzed together. This makes gaining
insights easier and provides more depth for data exploration.

2) Full query access

The applications your business uses likely only offer transactional API access to the data.
They’re not designed for reporting, so unless the data is exported and put into a format you
can easily query, you will end up being very limited in what you can pull. These APIs, if used
directly for reporting, can also become prohibitively expensive.

If you extract that API data with an ELT product and load it into a Data Lake, you’ll have all the
power and flexibility of SQL or whatever BI product you use - and the cost won’t go up
considerably with each chart.

3) Performance

Source data might be from the actual production database which could affect the performance
of the application that it is powering. Queries that demand a lot of data such as aggregations
are not optimally run on transactional databases.

https://dataschool.com/data-governance/etl-vs-elt/

Data Lakes are built to handle these types of ad hoc analytical queries independently of the
production environment. You can scale up resources on a Data Lake to be able to query data
even faster.

4) Progress

Getting the data in one spot is a necessary step for progressing to the other stages. It makes
working with data so much easier that many BI products require this stage - as they will only
connect to a single warehouse source.

In the Warehouse stage, you’ll be able to implement proper modeling on top of your Lake.
Through modeling the data will be cleaner, which enables more people to use it, causes fewer
errors, and creates less repetition of work.

What Engine to Use For a Data Lake
In order to build a Data Lake, we need to choose a database to host it on. Historically, and still
today at massive (> 100GB/day) scale, the Lake was stored in a file system like S3 buckets.

Today, with storage being so cheap and warehouses being so scalable, we recommend putting
your lake data directly into what is called a Warehouse Engine. This will make creating the
Data Warehouse much simpler as we’ll cover once we get to that next stage.

What is a Warehouse Engine?

In 2005 a combined group from Brown University, Brandeis University, and MIT released a
ground breaking paper know as the C-Store paper introducing a new column store
architecture. The many developments in that paper led to a new class of cloud based databases
that can very powerfully handle large sets of data.

These engines are geared toward analytic workloads that require larger, but less frequent
queries than their transactional counterparts. Transactional databases like PostgreSQL are
optimized to do quick reads and writes at incredibly high volumes in order to run the
applications that they serve. Analytic use cases query data way less frequently, but their
queries are usually more complex and over larger sets of data.

If these are vehicles, transactional databases are motorcycles capable of many quick trips while
warehouse engines are semis doing fewer trips but hauling large loads.

Deciding factors

The biggest decision to make when moving from production to a lake is what database you will
use. Most people consider:

Pricing
Ecosystem
Performance/Scale
Maintenance

There are a variety of database pricing models, from being based on storage to being based on
the amount of data queried. If your company is strictly using Amazon or Google as your
software vendors, this can dictate your vendor choice as well.

The architecture of the Data Lake has implications on how it’ll help your operations scale.
Differences in the many types of lakes entail columnar vs. row-oriented storage, and having
storage and compute together or separated. If there are requirements for ongoing
maintenance of your Data Lake you will want to know that as well.

When selecting the right data engine for your organization, you may also consider whether
you want an on-premise or cloud solution. More and more businesses are moving to cloud
solutions to take advantage of the “as a service” model and save on hardware costs so, we’ll
focus on cloud databases in this section.

Modern Warehouse Engine Products

Today, there are three dominant choices for cloud based data warehouse engines: Amazon
Redshift, Google BigQuery and Snowflake. Note - all of these are similar and based on the C-
Store paper.

Amazon Redshift

http://people.brandeis.edu/~nga/papers/VLDB05.pdf
https://dataschool.com/data-modeling-101/row-vs-column-oriented-databases/
https://dataschool.com/data-modeling-101/row-vs-column-oriented-databases/

Pros

Redshift has the benefits of ease of use, speed, and cost. Being a part of AWS, there is full
service integration for the wide range of AWS services such as S3 for storage and CloudWatch
for infrastructure monitoring. Redshift is generally cheaper than Snowflake or BigQuery, with
a couple of pricing options such as paying hourly per node or paying by number of bytes
scanned with Redshift Spectrum. It’s simple to set up and scale by adding nodes to your cluster
and increasing storage and performance.

Redshift is probably the most popular, although it is losing ground to Snowflake. It benefits
from being similar in connection and SQL syntax to PostgreSQL.

Cons

Users can often run into concurrency issues with Redshift if it isn’t set up properly or if there
are high volumes of queries from many users accessing the database. Ongoing maintenance
may be required with Redshift to resize clusters, define sort keys, and vacuum data.

Like many AWS services there are ways to customize your configuration with workload
management, compression, and partitioning. But these advanced features are not very out of
the box. So although Redshift is powerful it may require a dedicated resource from your data
engineering team.

Google BigQuery

Pros

BigQuery is not bound by cluster capacity of storage or compute resources, so it scales and
performs very well with increasing demands for concurrency (e.g. more users and queries
accessing the database). As a fully managed database, BigQuery handles vacuums and resizing
on its own which can save time for your data engineers and makes it easy to use and maintain.
For businesses using Google products, BigQuery integrates well with Google Drive and Google
Analytics.

Cons

Cost is determined per query byte, making it difficult to budget or regulate if you have users
running ad hoc queries against the Data Lake. To work around this, you can leverage
BigQuery’s cost controls, but it can still restrict the amount of analysis you can perform
because it limits the queries you can run.

Snowflake

Pros

Like BigQuery, Snowflake has an architecture that separates the compute query engine from
data storage. As a result, it is highly scalable at any amount of volume and concurrency.
Pricing is based on the storage and compute used on a time-basis with their virtual databases
instead of per bytes scanned. Tuning, indexes, and distribution keys aren’t required for queries
to be optimized and performant. Because of these reasons, it can be said that Snowflake has
many of the benefits of both Redshift and Big Query.

Cons

Snowflake is a relatively new database in the market, so if you are familiar with SQL functions
supported by databases like Redshift or Postgres you may find some inconsistencies in the SQL
syntax. Snowflake is also generally more expensive.

Database Engines

PostgreSQL

Pros

Unlike the options above, PostgreSQL is an open source database that is free to download. It
can easily be spun up on your local server or hosted on various cloud services such as AWS.
Postgres also has an ANSI compliant SQL library and supports an extensive library of third-
party and user-defined functions. As it’s a transactional database, it has very fast writes and
also has fast reads below ~100M rows.

Cons

Postgres is a straightforward, flexible solution that’s different from Snowflake, Redshift, and
BigQuery because it is a row-oriented database more suited for processing transactional data
over analytical queries. It’s a single database connection not architected for parallel
processing, so it generally doesn’t perform as well if you have a data volume of over 1 TB.
Consequently, Postgres is great as a database, but is not a good choice for a Data Lake if you
have a high volume of data (>1TB).

Recommendation

Selecting a Data Warehouse can be dependent on a number of factors that should be
considered before making the investment. If you prefer a cheap, straightforward Data
Warehouse you may be tempted to go with PostgreSQL, however it will have trouble scaling as
a Data Warehouse.

Redshift is a good choice as a standard cloud Data Warehouse if you have the capacity for a
dedicated DBA. BigQuery and Snowflake are both highly scalable solutions considering their
architecture. However, if cost or concurrency limits will be an issue for you then Snowflake
would be more suitable for your organization.

Remember all of these data warehouses are built on the same C-Store architecture so the
differences will not be severe in performance. If you’d like a full benchmarking (though the
same final recommendation) do checkout Fivetran’s awesome warehouse benchmark.

https://fivetran.com/blog/warehouse-benchmark

Extract and Load a Lake
To get data into your Data Lake you will first need to Extract the data from the source through
SQL or some API, and then Load it into the lake. This process is called Extract and Load - or
“EL” for short.

There are a number of great modern EL vendors (sometimes called ELT vendors) such as
Fivetran, Stitch Data or Blendo.

These EL providers built detailed Extract scripts for the most popular API’s and offer a simple
experience for extracting and loading your data into your data lake. The process usually
involves the setup of a pipeline where credentials are given for both the destination and the
data source and some configuration where light transformation is performed, e.g. selecting
what tables and fields to sync, hiding some values for privacy reasons, etc.

The setup can be performed with minimal engineering effort in most cases.

Extract Options

Extraction is the phase of pulling data from a data source, through APIs or SQL. We can do a
complete extraction of all data available, or we can do an incremental extraction every time we
run a sync. A complete extraction will extract all the data from the data source. An
incremental extraction will only extract updated records from the data source.

Complete Extraction

A complete extraction is the easiest way since no configuration is required but it has two big
disadvantages.

1. You end up with a lot of duplicate data in your data lake
2. You increase the complexity of the next steps in your analytics stack

You will have to figure out what data you actually need in the data lake, so it will require more
complex logic to do it and more processing.

Incremental Extraction

The preferred alternative is to do incremental extractions. This is more challenging since you
need to check for new or updated rows and account for changing schemas. However, it is
typically preferred because much less data being processed and fewer updates will need to be
made in the data lake. All cloud ELT vendors support incremental extractions from your
sources.

The main downside to incremental extraction is deletions in a data source. It’s not easy to
detect and implement deletions in the general case. ELT providers do not guarantee
consistency under deletions in most cases, in some cases it can be done or it is implemented by
the source, e.g. data is never deleted but flagged as is_deleted instead.

A complete dump would guarantee that you have always an exact replica of the source state.
Keep in mind that in analytics this is not important in the general case, but keeping the
deleted records might also be something that is required.

Load Options

However you extract data from your data sources, you need to decide how these changes will
be reflected on your destination. You can push changes through to existing data in the data
lake or you can store this new data separate from existing data.

Push Changes

If you are using a database system as a data lake, then you can update the data with the pushed
changes. This will end up having a close replica of the data from the source system to your
Data Lake and it optimizes storage.

Store Separate

The other way is to save the changes without updating the records. This is pretty much the
only way you can do it if you use a file system and don’t want to add a lot of complexity on
your data lake. The benefit of doing this is that you have a history of all the changes that
happened on your data.

https://fivetran.com/
https://stitchdata.com/
https://www.blendo.co/

Multiple schemas

Most EL vendors will insert each source into the lake as a new schema or folder if you’re on a
file system. This is ideal as your data will still be organized by source and there is no chance of
commonly named tables overwriting each other.

It will mean that when querying across these schemas you’ll need to remember to specify the
schema names in addition to the table names.

SELECT * FROM "salesforce"."_user" AS "SFuser" JOIN "zendesk"."user" AS "ZDuser" ON "SFuser"

Other Extract and Load routes

Traditional ETL

For the reasons we’ve outlined here we recommend ELT over ETL. But if you still want to do
things the traditional way, with Transformations happening before things are loaded into the
Lake you can use products like Xplenty or Amazon Glue.

If you do this, you’re essentially doing the Lake and Warehouse stages all in one jump and
skipping the Lake piece of the recommended stack. That might sound like a great thing, but it’s
important to note that it won’t save you any money or time - in fact it will likely cost more.

DIY

If you value your time, money, sanity and data integrity don’t DIY your own EL scripts. If you
DIY you will dedicate precious engineering resources to something that can be done at a
fraction of the cost and time using a cloud solution. Your data engineers can work on more
important data projects related to your overall data infrastructure and product.

Sometimes, you may need to create custom code for a source that’s not widely supported. If
you do need to, please at least use a framework like Apache AirFlow. The last thing you want is
a mess of scripts and cron jobs deployed haphazardly.

https://dataschool.com/data-governance/etl-vs-elt/
https://www.xplenty.com/
https://aws.amazon.com/glue/
https://airflow.apache.org/

Data Lake Security
Prior to having a Data Lake, all analysis had to be done by working with data in many different
places. These tools required individual logins which are hard to track and maintain the
appropriate levels of access.

Data Lakes provide a way to centralize access to data and make it simpler to manage
permissions.

Data coming in to the Data Lake is likely not cleaned yet so there may still be sensitive
information coming through. Don’t Extract or Load sensitive data/columns, this is
configurable within the ELT tools. Also be wary of who you grant access to the Data Lake since
it gives much more access to all of the data than giving access to a particular source.

Access in central place

Remove access from individual tools, move all access to Data Lake. This will cut down on
tickets requesting access and mishaps where people retain access to information they
shouldn’t have.

Permission tiers

Now that you can easily grant anyone access to data, you will have more people using that
data. While this is advantageous for analysis and exploration you do need to be mindful of
what schemas and tables they can see.

Start out by creating two users groups on the Data Lake as follows:

1. For admin and engineers (Full Access)
2. For analysts and business users (Relevant Access)

You can prevent the second group from accessing sensitive data in the Data Lake by limiting
that group’s permissions to only relevant schemas or tables.

https://dataschool.com/data-governance/etl-vs-elt/

In general set broad controls so it is easy to manage. As you grow in sophistication and turn
your Data Lake into a Data Warehouse and Data Mart you can create more refined permissions
settings.

Data Lake Maintenance
Data Lakes are inherently not very well organized or maintained. They should be relatively low
maintenance but there are two areas that will need some attention.

Data Sources
Performance

These maintenance activities can be expensive if you extracted and loaded your data with
custom scripts. You would need in-depth knowledge of where data is coming from. You would
need to know how to work with their API and data structures and potentially have to write a
lot of new code when they make an update. Don’t Extract and Load manually, use tools like
Fivetran, Blendo, or Stitch which will automatically handle these data source updates.

Data Sources

The main place where maintenance issues occur is when the data from the sources changes or
the data is not making it from the source into the Data Lake.

Adding new data sources

Ideally, this is as simple as clicking a few buttons inside of an ELT product. Products such as
Fivetran, Stitch, and Blendo have large numbers of connectors for different data sources:

https://fivetran.com/directory

https://www.stitchdata.com/integrations/sources/

https://www.blendo.co/integrations/

Data source updates

Sources change all the time, and ETL tools can handle these for you. This is what they focus on,
so they will work to update API calls to make sure the data you’re getting is accurate.

https://fivetran.com/directory
https://www.stitchdata.com/integrations/sources/
https://www.blendo.co/integrations/

Fixing broken connections

Occasionally, you will need to manually reconfigure things. If a data source adds a new field or
removes a certain table some of your queries might break. You will need to look into the
changes and update your queries to work appropriately.

As shown in the case above, we need to consult the datasource and update the field name in
the query. Therefore, to fix the query, we updated “cost” to “campaign_cost” as shown below.

Performance

At the Data Lake stage, you should focus your optimization at the dashboard or query level.

Optimize individual queries

There are simple concepts to keep in mind when optimizing queries. Only join what you have
to, Select only the columns you will need to analyze, and so on. To dig in deep check out our
Book on Optimizing SQL.

Caching

Many BI products allow you to cache data for improved query speeds and less strain on the
database itself. While this reduces the real-time nature of your analytical query, you can query
the data as much as you would like.

https://dataschool.com/sql-optimization/

Create limits

Some platforms struggle with concurrency, where lots of people are querying the same source
at once. Improve query speed in these scenarios by limiting how many queries people can
perform on the database. While this can be a blow to people’s curiosity or analysis, it quickly
solves this performance problem.

Queries can be limited in different ways:

Limit number of people querying
Limit queries per day
Big Query - Set max bytes

Scheduling

Examine how your BI product queries the database. Does it do it automatically on a schedule or
is it manual. Tools such as Chartio have options to schedule queries to run at off-peak times to
balance the load on the database and Smart Refresh options to prevent queries from running
when dashboards aren’t actively being viewed.

These sorts of tweaks become especially important as more users query the database.

Summary

To keep a Data Lake being useful you need to:

1. Monitor data source connections and update pipelines when necessary. Use an ETL
product to make this simple.

2. Keep an eye on performance. More people will be querying the database in different
ways. Optimize individual queries that are impacting the database, set up caching to
improve speed, create limits to stop people from over-querying, and schedule how your
BI tool refreshes queries.

Stage 3 - Warehouse

Why Build a Data Warehouse

What is a Data Warehouse?

A Data Warehouse (also commonly called a single source of truth) is a clean, organized, single
representation of your data. Sometimes it’s a completely different data source, but
increasingly it’s structured virtually, as a schema of views on top of an existing lake.

Having a clean unified source of truth enables you to write simpler queries, make fewer errors,
work faster (as you’re more organized), and repeat yourself much less often.

This stage is right for you if:

More than a few people are going to be working with this dataset
You want a clean source of truth of your company
You don’t like fighting integrity issues
You need to separate the structure of the data from the always changing transactional
sources.
You Don’t like Repeating Yourself (DRY)

You’ve outgrown this stage if:

You want to get democratized - and enable others in your company to explore and
understand data themselves
You’re prepared to teach and enable business users in your company - hopefully using
the many resources of the Data School
You have projects that require different formats of the source of truth for easier use
Having truly informed employees is important to your company’s competitive success

Six reasons to build a Data Warehouse

1. Easier to understand and query - simplified single model. No more duplicate tables,
confusing column names, or mysterious values.

2. Faster for the data team to use. Less time is needed to clean and transform data to
perform analysis.

3. Approachable to work with for business users. Complex joins have been reduced and the
correct column is obvious.

4. Trusted, consistent source of answers. Everyone generates insights from the same data;
no more varying answers to the same question.

5. Maintainable with less time and effort. After adopting naming conventions and a style
guide you can maintain as you add data.

6. Separated from transactional data schema. Queries don’t affect app performance, and
aren’t affected by rapid changes in the data.

This section of the Data Governance book will explain why you should create a Data
Warehouse, and how to implement it so that you get all the benefits it can deliver to your

business. Before we dive in deep, let’s look at the data issues you face with a Data Lake.

The Problem with Data Lakes

Typically, organizations reach roadblocks in making sense of the data in their Data Lake. When
the amount of data in your Data Lake reaches a level of complexity with irrelevant,
unstructured data, it will be too confusing and messy for non-data analysts to use. Data is
inconsistent and unstructured, so it can be error-prone with users using the wrong columns or
calculating metrics incorrectly.

When organizations have an initiative to empower users outside of the data science or
engineering team to leverage data, they will move to a Data Warehouse. What differentiates a
Data Warehouse from a Data Lake, or other source, is that the Data Warehouse will provide a
cleaner view of the data and is easier for users to query.

To illustrate the difference, imagine all of your inventory is under one roof, but in a big pile.
It’s unsorted, and some of it’s rotten. You may know where everything is in the pile, but if you
want to work with others you’ll need to organize it. A proper warehouse requires shelves and
organization that makes sense to anyone using it.

Take an example of a database tracking a product’s users and usage data. The raw data may be
difficult to understand for the average user because of things such as bad naming conventions,
complex data types, data inconsistencies, irrelevant data and highly normalized tables.

Example Data Lake Schema:

This example was designed as a transactional schema, not for analysis. Without a tool such as
Chartio, navigating this schema for analysis would be incredibly challenging. However with
Chartio you only need to focus on cleaning up tables to get much more value out of your data.
Focus on making Data Lake tables easy to understand.

Example Data Lake table:

We can see multiple columns with issues that would be difficult for an analyst to understand or
make use of. Let’s see how this table could be reconfigured to become useful for analytics.

How Data Warehouses differ from Data Lakes

Use modeling to create a clean version of the schema where all of the above inconsistencies
and points of confusion are addressed. This will be your company’s Data Warehouse. It will
enable more users to understand and use the data. You can remove a few irrelevant tables for
analysis but most of the focus should be on cleaning up columns.

Let’s take the table above and apply some simple transformations to it.

We can see how dropping columns, adding columns, filtering rows and clarifying columns
make the data much more straightforward to use and interpret. Now, people without
experience with the data have a much easier time coming up to speed and will make fewer
mistakes. Let’s look at the final table without all the editing markup.

This is the promise of a Data Warehouse: clear tables that can be used by anyone without
having to dramatically alter the schema.

Summary

Data warehouses make your data:

Easier to understand and query - simplified single model

Faster for the data team to use
Approachable to work with for Business Users
Trusted, consistent source of answers
Easier and less timely to maintain

Data Lake data is the pile of products in your building.

Data Warehouse is those same products sorted, shelved, and tagged.

Data Warehouse Architecture
When multiple people ask the same question using the same data and get varying answers, it
creates doubt in all of the data in your organization. Additionally, it’s demoralizing for
everyone and time-consuming to figure out the right answer. Unfortunately, this is typical
when data has not been cleaned up into a Single Source of Truth.

People get inconsistent results because:

Data sources change
Schemas are overly complex
Table and column names are confusing
Metrics need to be derived from the data

What is a Data Warehouse Architecture?

A Data Warehouse is a database where the data is accurate and is used by everyone in a
company when querying data.

The promise of a Single Source of Truth is accuracy across your organization.

This is an obvious thing that any company wants, yet a lot of companies struggle to deliver.
Creating a Single Source of Truth requires data engineering effort. Let’s explore the problems
that a Single Source of Truth solves, issues to watch out for, and best practices.

Data Sources

Before you even build a Single Source of Truth, your company will likely have data sources that
overlap in terms of what they track. You will also have data from dormant data sources in your
Data Lake that is still needed for certain analyses.

Imagine you were tracking sign-ups via Hubspot and after a year you decided to switch to
Salesforce. That means that prior to your switch, the Salesforce data will be empty. Moreover,
the Google Analytics data might not be as well synchronized between your Hubspot data and
your Salesforce data. When an analyst attempts to query for sign-ups, it will be unclear which
data source they should use.

Consolidate Data Sources

When your company has used multiple tools to track the same type of data, if you can, migrate
the data from the previous tools into the latest tool. If this is not an option, use the data
warehouse to create a table which UNIONs the data from both sources. This ensures the
historical records are not lost and creates one location for relevant metrics. This will require
some renaming and cleaning to accomplish.

In addition, if you want to maintain access to old/unused data sources from your Data Lake in
your Data Warehouse, you can label data sources as deprecated or approved to help guide

people during their analysis.

Simplify the Schema

In a Data Lake, the schema reflects in transactional logic of an application and follows best
practices (such as a 3rd normal form) so that updating values will not produce errors. But this
type of schema can be difficult to navigate and many tables will never be used in an analysis. In
the past, books recommended using dimensional modeling to reduce the schema complexity,
make it easier to run queries, and enhance performance. Today, due to advances in BI tools
such as Chartio and Data Warehouse technologies, dimensional modeling is no longer worth
the effort.

Simple Schema

We create a Single Source of Truth by creating views on top of the existing schema. There is no
need to move away from 3rd normal form. The main thing we want to do to simplify the
schema is to exclude tables from the new views that only contain app specific logic and are not
useful for analysis. If you want to make it even easier to work with a specific set of data, you
can create a wide table (view) that does all the joins. This can sit alongside the cleaned up
normalized version of the Data Warehouse.

Simplify Tables and Columns

Table and column names are typically created by engineers to be used by the application the
data comes from. Table names, column names, and even a column’s purpose for being in the
table can be confusing to others. This makes it challenging for business users to analyze the
data without consulting the engineer. We can review the table we referenced in Why Build a
Data Warehouse:

Having multiple Id columns can be confusing.
Nulls can produce unexpected results during aggregations.
Inconsistent naming reduces confidence that the data is correct, and makes it hard to
aggregate and group the data.
Non-descriptive Column names and values will require the analyst to ask an engineer for
clarification.
Most analysts are not able to use regex to parse out valuable information from JSON data.

https://dataschool.com/data-governance/why-build-a-data-warehouse/
https://dataschool.com/how-to-teach-people-sql/how-sql-aggregations-work/

Deprecated data flags are often missed by analysts, so this leaves room for error in
aggregations.

To address these issues we need to keep the analyst/business user in mind and make all of the
fields easy for them to interpret. The first step is to develop guidelines for how you want to
clear up the data.

Naming convention and style guide

When going through and recreating the schema with views of the relevant tables you should
also clean up what’s in each table. Exclude irrelevant columns and rename any columns that
are confusing. Naming conventions help people analyze data consistently because they clarify
what each column is and how it can be used.

Simplify

It’s quite common for raw data to be extremely complex. Data was typically meant to be
consumed by applications and not directly by business users. By taking some time to simplify
data, we can greatly improve business user success when querying.

Best Practice Reason

Only include fields with obvious
analytical purpose

It's best to start modeling with only the most relevant
columns, excluding any columns that has no immediate
or obvious analytical purpose.

Extract relevant data from
complex data types

Application data sources may contain JSON, arrays,
hstore and other complex data types. These are
typically hard to query from business intelligence tooling
and should have relevant data extracted into new
columns.

Example:
Supposed a table books contains an id column and the
following JSON column.

 {
  title: "Moby Dick",
  author: "Herman Melville",
  genres: ["novel", "fiction"]
 }

The resulting modeled books table would contain an id,
title, and author columns. Genres could be modeled as
an independent table, reduced to a single genre based
on custom rules, or some other method.

Change flags and crypto
abbreviations to meaningful
values

It's common for application databases to have flags or
cryptic abbreviations in columns that work well for the
application and terrible for a business user. It's important
to transform these values into easy, human readable
values. Some examples:

Boolean values 0 and 1 should be transformed to
relevant strings, such as true and false or on and
off.

Flag values should be transformed into relevant
strings. If a column billing_status has three
numeric values (i.e. 0, 1, 2) that represent some
status, they should be transformed into a relevant
business concept such as Active, Not Active,
Delinquent.

Cryptic values should also be transformed into
easy to understand business concepts.

De-normalize where possible Applications typically have highly normalized tables to
prevent duplicates, reduce space, and make
modification easier. This typically makes it harder for
business users to browser the schema however because
the complexity of the joins may be hard to follow. Build
wider tables where appropriate, collapsing common
concepts into a single table. Some examples could be:

Combine the sources, sources_redshift,
sources_postgres, and sources_myself tables into
a single sources table with the lowest common
denominator of values that make sense for a
business user.

Combine the users and addresses tables into a
single users table since addresses are
meaningless on their own.

This simplification requires trial and error and you may
not always get it right.

Cleaning

Data is messy and requires some cleaning to ensure accurate results. Cleaning prevents
common problems that might cause a query to produce incorrect results.

Best Practice Reason

Attempt to eliminate NULLs

NULL values have unexpected consequences in SQL (is
"string" <> NULL?). It's best to remove all nulls with
values. Some examples:

Change all NULL values in the first_name column
to the string Blank.

Change all NULL values in the last_login_type
column to the string Never Logged In for
customers that have never logged in.

Fix common data
inconsistencies

Bad data always makes its way into raw data sources.
Whether it is misspellings or just junk data, it is
important to clean up the data as much as possible.
Some examples:

State names that have a mix of abbreviations, full
names, and junk data should be transformed into a
single, consistent format such as the full state
name.

Phone numbers might be garbage text entered by
users to avoid getting phone calls.

Follow Naming Conventions

Schemas, tables, and columns should all be named in
accordance with naming conventions listed below. At a
minimum, names should be human readable and be
representative of the data type and values stored.

Remove irrelevant data

Rows that are irrelevant for various reasons should be
removed entirely from the data set. Some examples
could be:

Employee testing

Fraud or spam

Inactive

Obviously, if analysis is being done on fraud or spam,
that data should not be removed but in most causes, if a
row would always be excluded from a query, go ahead
and remove it in modeling.

Change Data Types
Modeling is a great time to change data types to more
appropriate types. Unix timestamps could be converted
from int columns to datetime for example.

Naming Conventions

Initially there will be a variety of naming conventions used for tables, columns, and values.
Creating a standard for all of these makes it easier for others to find and understand the data
they are looking for.

Best Practice Reason

Plural Table Names
A table of Leads should be titled "Leads" not Lead.
When there are more than two words on the last needs
to be pluralized: opportunity_histories

id as primary key A simple numeric primary key labeled id should be
standard for all tables.

foreign keys follow
[tablename]_[id] format

ForeignKeys should follow this format to make it very
clear on where the table is linking to. If there are two
foreign keys to the same table you can preopend a name

to them following the format:

[uniquename]_[tablename]_[id].

An accounts table linking to a users table with both a
billing contact and a main owner would look like this:

Accounts

owner_user_id
billing_contact_user_id

Start columns with a _ if they
are needed but should be
hidden for Visual mode.

If there are columns you need in the model for joining or
other purposes but donʼt want visible by default in visual
mode you can prefix them. They will otherwise be
treated just as any other column.

Let s̓ say you didnʼt think the foreign keys in the
accounts table above needed to be shown in Visual
mode. You can simply prefix them as shown below. The
relationships will still be detected. It s̓ a best practice not
to show the foreign keys visually.

Accounts
id
name
_owner_user_id
_billing_contact_user_id

This should not be used for columns you're on the fence
about needing. Those just shouldn't be included. These
are for columns that are needed for querying purposes
but have no use in a Visual setting - primarily foreign
keys.

Lower case, underscored
naming

Our data model needs to be easily editable in SQL mode
so we should follow conventions that make editing raw
SQL easier. Therefore, we should attempt to have
column names like id, first_name, last_name, and
last_login_type instead of more human readable forms in
the model. Chartio will handle that conversion.

Publish a style guide and distribute it among all of your employees to make adoption of known
terms much easier.

Metrics

There are a lot of different ways to measure how a business is performing. Some are fairly well
known, such as Monthly Active Users or Number of Trials Started. In most businesses, getting
an accurate count on a metric is difficult because you need to filter out irrelevant data:

Test accounts
Internal Company emails
Non product-related page visits
Users that are no longer employed by a client company

Not filtering out the right data will negatively affect your analysis. Presenting to others who
have a conflicting analysis of their own will cause everyone to lose trust in the data.

Another more subtle problem with metrics is abbreviations. If Monthly Active Users is
abbreviated as MAU in the database, it may be misinterpreted in someone else’s analysis. Do
not assume everyone understands the abbreviation for the metrics you are reporting.

Create a Standard Metrics Dashboard

To define the calculation of a metric, create a Dashboard with this metric in it and provide text
on the dashboard to explain how it was calculated and what has been filtered out. Make this
easily searchable!

Another approach is to pre-calculate the metric in a view in the Single Source of Truth
database. We recommend doing this through a SQL-based modeling tool such as dbt or
Dataform. Defining the metric in the database will remove most, if not all, of the confusion.

To eliminate any remaining confusion on using the metric in your analysis, many SQL-based
modeling tools can add a data dictionary to the data model. This allows the author of the data
model to write out comments on why it was calculated that way and why certain data was
filtered out.

Storing the metric in the database through modeling allows you to control changes in the data
and the definitions systematically. You will still need to communicate changes, but they will be
documented if anyone needs to check on their own.

Summary

Create a Single Source of Truth and give employees access to it and only it
Make your data intuitive through naming conventions and style guides
Simplify the Schema by excluding app-specific logic tables
Simplify table and column names: define them by their spoken language titles instead of
technical jargon
Centralize the control and accuracy of metric calculations through SQL-based modeling

References.

Getdbt.com

Data Warehouse Security
At the warehouse stage, more groups than just the centralized data team will commonly have
access. You must use data governance to safeguard certain pieces of sensitive information from
being accessed by the wrong people in your organization. Many security regulations
mandating data access rules have been passed, such as GDPR, and many companies have
industry standard compliance rules that they adhere to as well, like SOC and HIPAA.

Whether it is personally identifiable information (PII) or financial information, sensitive data
is much more prevalent throughout a product’s journey and your Data Warehouse than one
might think. Preventing the exposure of such information is key and can be approached in a
variety of ways.

Every company stores information that cannot be exposed to everyone who works in the
company. When moving from a Data Lake to a Data Warehouse more people will gain access to
data. You need to ensure that sensitive information is aligned to what is being stored, how it’s
restricted in the Data Warehouse, and how it can be accessed via your BI tools.

There are multiple ways this can be handled and multiple questions to be answered:

Where is sensitive data (PII and financial) currently handled?
Will this sensitive data still be present in the Data Warehouse and then cleaned up?
How will this information be removed or restricted from the exposed datasets - scripts
on the way to the warehouse, data marts created from the warehouse?

These questions need to be answered before you connect these sources to your BI tool.

Within large companies, often times all internal data is considered confidential. Even
internally, departments are on a need-to-know basis regarding data in other departments.
Issues arise when a company connects its Data Warehouse to its BI platform or grants query
access across different departments in general. This leads to sensitive data potentially being
exposed to unauthorized users.

How to secure sensitive data on the database

The most direct way to limit access to the proper people is to enforce rules on the database
level. This can be done through creating slave read-only replicas, creating custom user groups,
and encrypting sensitive data.

Slave Read-Only

Set up your warehouse to be read-only by default. This prevents any dangerous SQL write
statements from being executed on your data.

Custom User Groups

Regardless of whether you create the slave read-only warehouse, create a new user group that
has read access only. You can choose to exclude access to specific tables or columns of data
from that new user group. In addition, you can restrict access to row-specific data. Row-level
permissioning allows you to give full access to tables containing sensitive information but
restricts which rows and values the person querying can see. Depending on the underlying
database, configuring row-level permissions differs slightly.

A great example of when to use row-level permissioning is adhering to HIPAA compliance
when accessing a hospital’s dataset. Each doctor within this hospital has access to their own
patients’ records for analysis and review. However, we want to prevent every doctor from
having access to every patient’s medical records. Implementing access controls at the row level
by account/patient ownership (whether that is patient id, patient name, etc.) will prevent
doctors from having the chance to access a patient’s personal information they don’t need.
You can apply this example to other groups as well: sales teams, customer tracking, employee
records, etc.

Encrypt Columns

If you need to group or aggregate by sensitive data you can create encrypted versions of the
data. Then users can create summary tables where sensitive metrics, like financial data, can be
aggregated to a level that is appropriate for different departments to see and analyze. The
level of security you implement will limit what type of analysis can be performed on the data,
but does ensure that the sensitive data is protected.

How to secure sensitive data in a BI tool

Now that we have secured the underlying database, we need to ensure that there are no
loopholes in the BI tool. Even setting up the right permissions on the database does not ensure
sensitive data won’t be inappropriately shared through a dashboard or report. This type of
issue can be difficult to prevent, so the common strategy is to set policies with users of the BI
tool and regularly audit who is accessing and viewing what data.

Consistent account audit/clean up

Projects change, roles change, and use cases change. Any of these changes can impact
employee permissions. Outdated permissions can lead to compliance and privacy issues.
Periodically reviewing and updating permissions is a best practice to protect sensitive data.

During an audit you should check all the previous questions we talked about:

Who has access to which data sources?
Who has access to sensitive row-level information?
Who is on the admin team or has admin access?
Who has access to or is viewing dashboards and reports containing sensitive data?

BI tools offer answers to these questions through varying levels of usage information in-app
for the admins to monitor and review. If you do not have all of the pieces of information
necessary, talk to the support team at the BI tool you’re using. They can help pull the
necessary information so you can make informed decisions on the security of your account.
Feel free to push the boundaries and you may be surprised at what information is available
when you ask.

Summary

Create sensible limits on the database by removing edit access and filtering what data users
have access to through custom user groups, and finally encrypting sensitive data. Regardless of
the precautions you take you should still perform regular audits to verify who has access to
what and where sensitive data is being exposed.

Data Warehouse Implementation
Now that we’ve established what changes we want to make and decided on what engine to use
for our Data Warehouse, let’s go through the process of getting data from the Lake into the
Warehouse. While this sounds complicated, it’s only comprised of using SQL to create Views.

Why SQL

We recommend using SQL to perform all transformations. It’s the standard language for
relational database management systems (which is what a Data Warehouse should be) and it’s
the environment you are probably using for your Data Lake. Working in a SQL-based model is
ideal because a variety of tools and platforms already exist to write and execute queries. Also,
data engineers, analysts, and some business users already understand how to use it.

Why Views

Views allow us to quickly reformat what the data looks like without needing to build a new
Data Warehouse or incurring costs from storing any additional data. Unless you are dealing
with massive amounts of data there are not significant performance gains in creating new
tables or materializing the views.

Use a Modeling tool: dbt

Instead of writing the views directly on the database (which is an option) we recommend using
dbt for creating your SQL views. dbt provides many features to help you keep a clean Data
Warehouse such as version control, logging, and much more.

Data Lake to Data Warehouse View Examples

Here is an example of applying a transformation to move from a Data Lake to a Data
Warehouse. First, we build a query to combine a couple of Salesforce objects into a single table.
For example, using information about an individual and their role within a client company can
give you more insight into how you may want to interact with that person.

So, getting information on that person’s role into the same table as his/her contact along with
some basic demographic information, will save the end user some time in querying the Data
Warehouse.

That query might look like this:

We are choosing a subset of the total possible columns and rolling up/denormalizing the table
a bit to make it easier for others to query. To make this code into SQL that builds our Data
Warehouse, we need to add CREATE VIEW. So the query would actually be:

CREATE VIEW salesforce_user AS
SELECT
 u.id
 ,u.name
 ,u.email
 ,u.department
 ,u.phone
 ,u.phone
 ,u.created_date

https://www.getdbt.com/

 ,u.is_active
 ,u.last_modified_date
 ,ur.name as role_name
 ,ur.rollup_description as role_rollup
FROM
 salesforce.user as u
 left join salesforce.user_role as ur on u.user_role_id = ur.id;

If we go back to the example first introduced in the Why Build a Data Warehouse article we can
walk through all of the transformations described in one SQL query. So let’s look at that messy
table with all of the hard to understand/query fields.

We then want to make all of the following changes:

We can create this as a series of SQL statements in a dbt file of common table expressions with
a final CREATE VIEW query at the bottom:

-- drop unused column External_id
WITH t1 AS (
 SELECT Id, Name, Display Name, Email, Location, Type, Info, Status
 FROM dl_table
),

-- Add consistent column Email
t2 AS (
 SELECT Id, Name, Display Name, Email, Location, Type, Info, Status, is_deleted
 FROM t1
 JOIN dl_email
 ON t1.Id = dl_email.Id
),

--Standardize Location column
t3 AS (
 SELECT Id, Name, Display Name, Email,
 CASE WHEN Location = "US" THEN "USA"
 WHEN Location = "Texas" THEN "USA"
 WHEN Location = "Sao Paulo" THEN "Brazil"
 ELSE Location
 END AS "Location",

https://dataschool.com/data-governance/why-build-a-data-warehouse/

 Type, Info, Status, is_deleted
 FROM t2
)

--Make column names and values descriptive for Type
t4 as (
 SELECT Id, Name, Display Name, Email, Location,
 CASE WHEN Type = "1" THEN "Can view"
 WHEN Type = "2" THEN "Can edit"
 WHEN Type = "3" THEN "Can admin"
 END AS "Access Level",
 Info, Status, is_deleted
FROM t3
)

--Parse relevant fields, drop original column for Info
t5 as (
 SELECT Id, Name, Display Name, Email, Location, Access Level,
 CASE WHEN Info = "%active" THEN "active"
 WHEN Info = "%inactive" THEN "inactive"
 END AS "Status",
 is_deleted
FROM t4
)

-- filter row that was deprecated from is_deleted, and drop column
t6 as (
 SELECT Id, Name, Display Name, Email, Location, Access Level, Status
 FROM t5
 WHERE is_deleted != True
)

-- create view for Data Warehouse
CREATE VIEW dw_table AS
 SELECT *
 FROM t6

For a given table we suggest managing all transformations step by step in common table
expressions with notes describing what is happening at each step.

We now have a clean view of the original data

A Data Warehouse may still have a few issues in the data but the vast majority should be
handled with obvious work arounds.

Summary

Create Views for your Data Warehouse
Lightly clean and denormalize your data so that it is easier to query
Use a modeling tool such as dbt to manage these transformations

Defining a Data Governor
As more people depend on data in their daily workflow, organizations are pressured to think
critically about the quality of data being provided. Having a small team field all data questions
will not scale, so companies must move from a centralized data organization to a decentralized
one.

Why you need a Data Governor

According to Gartner, Data Governance is an effective program to manage and control the
ever-growing amount of data in order to improve business outcomes. It helps ensure that the
quality of data is high and compliance standards are adhered to. This does not happen with
process alone; you need a Data Governor to drive and maintain Data Governance principles.

If your organization has built a Data Warehouse and has any of the following data services or
restrictions, we strongly recommend appointing at least one Data Governor:

Self-service dashboards
Operates in an industry with regulations and compliance procedures
Has large data sources spanning different departments
Strives for operational intelligence

Without oversight, employees will misinterpret data, sensitive data may be shared
inappropriately, employees will lack access to necessary data, and employees’ analysis will
often be incorrect. A Data Governor will maintain and improve the quality of data and ensure
your company is compliant with any regulations. It is a vital role to have for any informed
company.

Data Governors for Data Governance

With the exploding volume of data within companies, it has become extremely difficult for a
small technical team to govern an entire organization’s data. As this trend continues, these
Data Scientists and Analysts should transition themselves from their traditional reporting
responsibilities to those of Data Governors.

In a traditional reporting role, their day was filled with answering questions for various
business groups around their needed metrics. The shift to Data Governors finds them instead
creating cleaned, documented data products for those end business groups to explore
themselves.

This is called Democratized Data Governance, where the technical team (traditionally data
gatekeepers) handles the technical aspects of governance and share the responsibilities of
analytics with the end business groups.

The Roles of the Data Governor

As the Data Governor, everything addressed in all the chapters of this book is your
responsibility. This is your manual. Your role changes at each stage of sophistication. You
bravely lead your company from struggling to get value out of its data to producing accurate
insights consistently. Let’s step through each of the roles you will play.

1. Data Cleanup and Maintenance

The majority of the technical work of data governance is around collecting, cleaning, and
maintaining various data sets. This is a many-part activity that’s broken out here in subtypes.

Data Piping (ETL) and Warehousing

Data is going to exist in many different places inside of your organization. A big part of your
job may consist of bringing those disparate sets of data together, where people can query
across various sources. These combined places are data warehouses such as Google BigQuery or
Amazon Redshift, and there are various Extract, Transform and Load (ETL) tools out there such
as Stitch and Fivetran.

Schema Cleanup/Modeling

For most companies the team collecting the data is also the team reporting on the data. The
people on the team know all the ins and outs of the data. They can, for the most part,

https://www.gartner.com/webinar/1884416
https://www.stitchdata.com/
https://fivetran.com/

remember where the data they needed was and what tricky conditionals they’d have to put in
each query (for example, not to count deleted or expired accounts).

But when organizations grow and their need to have access grows as well, the people exploring
aren’t always the ones that put the data there. So, you have to clean up that data with the non-
technical data explorer in mind.

Some BI products have ways to do this internally, but often it’s best and more reusable to do
this on the database level. Just create new schemas in your database with a file full of your
chosen views for that consumer. This is both a usability best practice and a security best
practice.

Process and Auditing

Manually created data, such as that coming from your CRM, has a large margin for error. Also,
how this data is recorded in CRMs is often determined by business users, not by data teams, so
governance and data integrity can be less than ideal. For example, there may be two places
sales reps need to manually enter the date of a call, or cancellation tracking may change when
a new cancellation policy is put in place. Whenever there’s manually entered data, there will
likely be discrepancies.

The way of handling this is to audit the data, ensure that it’s being recorded properly for the
needed reports, and identify and develop missing processes with the managers of the relevant
teams.

Documentation

Again, the people exploring the data are no longer the people who put it there in the first
place. Ideally you’ve now created clean, curated, and simple models for specific teams. Even so,
you’ll still find a lot of benefit in documenting each table and column.

This can be done with a Wiki or leaving comments inside the database schema.

2. Permissions and Organization

Data security is obviously incredibly important. But besides that, permissions can be leveraged
for proper organization. Data projects can get messy fast. Not everyone needs access to
absolutely everything, especially if there is a clear process for requesting whatever additional
information is needed.

Organizations today often strive to be highly transparent, but when over-transparency leads to
confusion, it’s time to make the tradeoff for curating your team’s data experience.

3. Integrity Handling

It happens all the time: two people exploring data end up with two different values for the
same metric. This can be one of the must frustrating moments for anyone working with data
and can lead to some serious mistrust in the integrity of the data.

There’s no way of stopping this, but it can be minimized. If the data is kept clean and well
documented this problem should come up much less often. The best way to deal with it is to
educate everyone on the fact that the problem does happen and they should expect and
embrace it. Just as every product has bugs, every dataset does as well. When these
inconsistencies are discovered, you have an opportunity to fix/solve/clarify them as soon as
possible. One method of clarification is to build standardized metrics in your Data Warehouse
model and point people to them when these discrepancies arise.

Ensure there’s a clear process for people to resolve these integrity issues. Be available to them
and helpful when it’s reported. Maintaining a dataset is like maintaining a garden. There will
always be weeds growing and more to do. It will never be perfect, but it can be beautiful.

4. Tool Selection

The Data Governor has to make decisions on what best fits your organization’s needs. Be
mindful of tools that have high learning curves or have proprietary languages that lock you
into a tool. Consider all the pieces of your data analytics stack and make sure tools you are
selecting work well together.

5. Education/Enablement

No matter how well you’ve done your data cleaning, documentation and tool selection, you’re
still going to have to educate your organization on how to use the data to get accurate and
actionable insights.

https://www.postgresql.org/docs/9.1/static/sql-comment.html
https://blog.chartio.com/posts/the-boy-scout-rule-for-data?__hstc=113363352.2f70acb8b29adfc42b5a8865ee447307.1575497445428.1576797445226.1576799532545.14&__hssc=113363352.8.1576799532545&__hsfp=2046095835
https://dataschool.com/data-governance/evaluating-data-stack-technologies/

Here are the things you must educate your organization on:

1. What’s available in the models
2. How to use the BI tool
3. Your process for prioritizing data requests, data sharing, and access
4. Data Basics in databases, tables, data structures and SQL
5. Quality versus Vanity Metrics
6. Chart best practices

https://dataschool.com/how-to-teach-people-sql/
https://dataschool.com/how-to-design-a-dashboard/what-makes-a-great-dashboard-aces/

Data Warehouse Maintenance
Now that you’ve setup a Data Warehouse, the next and ongoing step is maintenance. This
involves making sure the Data Warehouse objects; columns, tables, views, and schemas are
accurate and up-to-date. Maintaining your Data Warehouse is integral for users in your
organization to easily and accurately gain insights into your data. If it is not maintained people
will query the wrong data and get conflicting results.

As a company’s Data Warehouse ages:

New Metrics need to be tracked
Some old Metrics are no longer needed
You will need to grant and remove permissions (more than you’d think)
Modeling will become un-optimized

These inevitable problems make it difficult for your company to conduct analyses. To prevent
these issues, you’ll need a data engineer familiar with the Data Warehouse, and how users are
querying the source. This article will go in-depth on these issues and how to address them with
routine maintenance.

Track New Metrics

Why do new metrics matter?

The way we need to measure our business will change over time. We will launch new products,
look into different user behaviors, or try to create a predictive model. We need to track new
metrics for these different efforts. Sometimes this means creating a new calculated field or a
new column, view, or table.

We may add a new field to track our customer information in Salesforce that is inline with our
new company objectives, say, tracking account activities through the services we provide.
From here, we can see what services are most popular with our customers, then, offer special
promotions on these services during seasonal trends where we see a fall in purchases in order
to increase sales.

Why do new metrics cause issues in a Data Warehouse?

When engineers or analysts create new tables, columns, or views to track metrics they do not
always follow the naming convention set out for the Data Warehouse. This makes
interpretation difficult by an analyst unfamiliar with the new metrics.

This can also create duplicate work – say you created a view for your support team but the
view along with the pertinent information inside it do not distinguish exactly what this view is
for. Users looking to query this view may not know it exists, so they may recreate this view.

How to add new metrics correctly.

When adding new metrics we need to consider:

How to add to the Schema
Backfilling data
Naming Conventions

How to add to the Schema

Do we only need to add the data to an existing table or should we add to a view or create a
whole new view? Let’s review what reasons we would do each:

Existing Table

The new metric can be understood and queried easily without complex joins or being
aggregated.

Existing View*

A view that exists that is relevant to the new metric.
That view is aggregated in a way that fits this data and its dependent metrics.
Complex join paths would make it difficult for people to query the new data accurately
without the view.

New View*

No view that exists that is relevant to the new metric.
No view that is relevant is aggregated in a way that fits how this metric should be
aggregated without the view.
Complex join paths would make it difficult for people to query the new metric
accurately.

*Typically it will be added to an existing table as well but it will be queried from the View

Backfilling Data

It is advisable to backfill data whenever we can determine what the values should be.

In a dimension table we might be able to determine the value based off of other columns or
there is an obvious default value to plug in. If we are not able to determine or have no obvious
default value leave the value as null. However, do consider the impact of nulls, such as in
aggregation. If this will impact your query try determining a stand in value to indicate you
could not backfill it.

In a measures table the same principles hold, so if it can be determined backfill it. Since
measures are more often aggregated the impact of nulls can be even greater. The other
negative of nulls in a measures table that has time-based data is that it limits your analysis to
when you added the new column. Sometimes this issue can be overcome by bringing in data
from previous data sources or by inputting values based on overall statistics or dimensions of
each row.

Naming Conventions

We also need to ensure these views, tables and columns follow the Data Warehouse’s naming
conventions. At Chartio, we follow a naming convention when adding new metrics or updating
metrics and making sure the name captures the purpose of the updated metrics (Naming
Convention and Style Guide). We recommend publishing your style guide and distributing it
among your employees as familiarity with the process keeps the naming convention intact.

Deprecate Old Metrics

Why do old metrics matter?

Metrics may become inaccurate or no longer worth analyzing. We want to prevent that data
from being queried so others do reach false conclusions.

Why do old metrics issues happen?

As companies grow the tools they use to get and move data change. This leads to multiple
places where the same type of data can be queried. Since the analyst might not be aware of
which source to use they may query the wrong data.

Also business objectives may change. This can affect what data is appropriate for analysis as
well. Features or products may have been deprecated as a result and therefore their associated
metrics might be misleading if the analyst was unaware of this.

How to deprecate old metrics correctly?

If you’re not going to remove columns, tables, or views from user’s access right away, we
recommend updating the names for these objects to _deprecated, or, _do_not_use. This makes
it clear when browsing or querying that they should not be used.

https://dataschool.com/how-to-teach-people-sql/how-sql-aggregations-work/
https://dataschool.com/data-governance/single-source-of-truth/

This style for old metrics should be incorporated into your company’s naming convention style
guide. It’s also worth letting users know that these metrics are no longer useful through email
or with your BI Tool so they’re not caught off guard. Again, naming conventions play an
integral role in how we keep users from querying data warehouse objects incorrectly.

Handle Permissions

Why do permissions matter?

Not being granted access to the data you need completely halts analysis. Similarly, not
removing someone’s access can be a legal liability. Having the right permissions is a line that
should be carefully considered, but caution should be taken to ensure that it doesn’t become a
bottleneck.

Consider a scenario where you have users working on multiple BigQuery projects and you’re
worried about query costs. In order to prevent users from abusing queries and raising the cost,
you’ll want to create a custom quota. As the BigQuery documentation outlines, a custom quota
will manage costs by specifying a limit on the amount of query data processed per day. This
can be set at the project-level, or, at the user-level. This type of permissioning is aimed at price
reduction, but we can also have permissionings aimed at keeping data intact, or, for privacy
concerns.

Oracle offers the ability to recover a dropped table, but, some data warehouses do not have this
ability. If you drop a table in PostgreSQL, you won’t be able to restore this table unless you
restore from a backup. If you can’t restore from a backup, there will be no way to recover the
dropped table. To avoid this, make sure the proper individuals have the right permissioning on
the right Data Warehouse objects.

Why do permission issues happen?

Permission issues happen when the BI Tool or Data Warehouse access does not mirror
employee status. This happens when:

New employees need to query the Data Warehouse
Employees change roles
Employees leave
Special permission
Account sharing

When you hire analysts, or an individual’s role changes which requires more access to the Data
Warehouse, you will want to make sure they have the appropriate permissions to analyze
metrics in the warehouse. If they lack the proper permissions, this will create a barrier in
completing their tasks. Or, if there are no restrictions in what objects they can access in place,
those unfamiliar with the Data Warehouse might alter or drop an object.

When employees leave sometimes not all of their accounts are deactivated. You may turn off
their email but this would not prevent them from logging into the BI Tool. Their account can
remain active which is a security concern.

Sometimes an employee is granted special permission to temporarily gain access to more data.
The problem occurs when their temporary access is not revoked after they no longer need it.

https://cloud.google.com/bigquery/docs/custom-quotas

Lastly, employees often share accounts to get the access they want for a particular analysis.
This is a bad practice as it does not leave a trace as to who is looking at what data.

How to handle permissions correctly.

Making sure your BI Tools access levels mirror the employment status of your employees helps
you track users and prevent security issues. The main priority of granting permission is to
prevent users from being able to access sensitive information, or, from accidentally deleting
data that can’t be recovered.

We recommend setting user permissions at a team level because as you scale up your usage
and add more users, it’s easier to track. Tracking individuals in a small company is trivial since
you know everyone by name and when new people are hired and when people leave. In large
companies you don’t know the vast majority of the people you work with and do not know
when their roles or employment status changes.

Sharing accounts is an unfortunate practice that you need to keep an eye on. Sharing accounts
makes it impossible to hold users responsible to what action they’ve carried out. If there needs
to be an answer as to why a user dropped a table or updated a column, you might have to ask
multiple people to figure it out. This can also be a potential breach of an agreement you may
have with your customer and their expectations of how you handle their data. We recommend
giving each user a separate account. This ensures security compliance and accountability in
the event of an error.

We recommend programmatically adding and removing users to avoid employees from being
blocked and to ensure they do not maintain access to data they should not have. If you decide
to manually add, remove, or change privileges for users, you’ll need to be vigilant in
completely removing/updating the permissions.

Tuning to Optimize

Why does ongoing modeling matter?

The amount of data you have will grow as your business grows and your objectives change and
you begin to track new metrics. As the data grows, you will need to consider if the way you
designed the Data Warehouse objects; schemas, tables, views, and columns still makes sense
based on the way users query it.

An indicative sign of needing to revisit Data Warehouse objects or when you should consider
remodeling the objects is performance. Performance matters to users, if non-complex queries
take too long to run they will stop querying data or start filing tickets to engineering.

Why do warehouses need ongoing optimization?

As your company grows the data that is queried changes too. New data, new analysts, and new
business objectives will shift what data is being queried. The original structure of Data
Warehouse objects may need to be reconfigured to optimize usage and performance based on
how it is queried.

How to continually optimize your warehouse?

Different data warehouses will have options to check performance, but most offer ways to:

Identify slow queries and add indexes
Identify common queries and create views

Identify slow queries and add indexes

PostgreSQL has a “slow query” log that lets you set a threshold of an amount of time, if a query
takes longer than this threshold a line is sent to the slow query log. From here, the data
engineer can determine how to best optimize the most efficient way to run the query, such as,
examining the query plan to see how a query is executing and adjust the query to be more
efficient.

We can deploy the EXPLAIN command and the EXPLAIN ANALYZE command. The EXPLAIN
command shows the generated query plan but does not run the query. To see the results of
actually executing the query, you can use the EXPLAIN ANALYZE command. Based on the
output, you can decide to create an index to speed up the query time. To learn more about
indexing and the various types, read indexing.

Identify common queries and create views

https://dataschool.com/sql-optimization/what-is-a-query-plan/
https://dataschool.com/sql-optimization/optimization-using-explain/
https://dataschool.com/sql-optimization/how-indexing-works/

In PostgreSQL you can use `pg_stat_statements` to group identical queries and find
optimization opportunities. The `pg_stat_statements` directive stores queries that are run
against your PostgreSQL instance. It saves the query, the execution time, the underlying reads
and writes, and the variables. This information allows you to determine what type of data
users want so you can optimize frequently used queries.

Creating a view can help users unfamiliar with the structure of the data warehouse by
consolidating what they need to query to a single place. For example, you can grant users from
a specific department access to a view that reflects all the departmental information they need
to query.

In addition, you can get performance benefits if you materialize the view or create a new table.
Most of the improvements here will be seen if the query is heavily filtered or if it is aggregated.
Users can then query the materialized view or table. You can get an even bigger bump in
performance if you add an index to this new materialized view or table.

To learn more about the pg_stat_statements, I recommend reading the following articles; The
most useful Postgres extension: pg_stat_statements and pg_stat_statements: The Way I Like It.

Summary

A Single Source of Truth Data Warehouse is a worthwhile investment. However, without
maintenance it will fall into disarray and lose its value.

As metrics are added, make sure they’re named properly.
As metrics are deemed no longer useful, make sure they’re removed to avoid confusion.
As you vet your metrics and find that some need to be updated/pre-aggregated, make
sure they’re named properly.
Keeping user permissions appropriate and accurate will free up database admins to focus
on important projects as well as avoid data being removed accidentally.
Considering the restructuring of Data Warehouse objects will help create a suitable
structure for analysis and complex querying along with cutting down performance cost.
The worthwhile investment of a data engineer to perform said maintenance tasks will
remove the bottleneck of incorrect analytics from a neglected warehouse.

References:

Claire Carroll - Fishtown Analytics: Five principles that will keep your data warehouse
organized
Claire Carroll: The difference between users, groups, and roles on Postgres, Redshift and
Snowflake
Don Jones: Three data warehouse maintenance tips for DBAs
BigQuery Documentation: Creating custom cost controls
Stack Over Flow: Can I rollback a transaction I’ve already committed? (data loss)
CYBERTEC: 3 Ways to Detect Slow Queries in PostgreSQL
CYBERTEC: pg_stat_statements: The Way I Like It
Citusdata: The most useful Postgres extension: pg_stat_statements

https://www.citusdata.com/blog/2019/02/08/the-most-useful-postgres-extension-pg-stat-statements/
https://www.cybertec-postgresql.com/en/pg_stat_statements-the-way-i-like-it/
https://www.geeksforgeeks.org/differences-between-views-and-materialized-views-in-sql/
https://www.citusdata.com/blog/2019/02/08/the-most-useful-postgres-extension-pg-stat-statements/
https://www.cybertec-postgresql.com/en/pg_stat_statements-the-way-i-like-it/
https://blog.fishtownanalytics.com/five-principles-that-will-keep-your-data-warehouse-organized-9c3d29caf6ce
https://discourse.getdbt.com/t/the-difference-between-users-groups-and-roles-on-postgres-redshift-and-snowflake/429
https://searchsqlserver.techtarget.com/feature/Three-data-warehouse-maintenance-tips-for-DBAs
https://cloud.google.com/bigquery/docs/custom-quotas
https://stackoverflow.com/questions/12472318/can-i-rollback-a-transaction-ive-already-committed-data-loss/12472582#12472582
https://www.cybertec-postgresql.com/en/3-ways-to-detect-slow-queries-in-postgresql/
https://www.cybertec-postgresql.com/en/pg_stat_statements-the-way-i-like-it/
https://www.citusdata.com/blog/2019/02/08/the-most-useful-postgres-extension-pg-stat-statements/

Stage 4 - Mart

Why Build Data Marts

What is a Data Mart?

A Data Mart is a filtered (and sometimes aggregated) subsection of a Data Warehouse to make
it easier for a particular group to query data. It provides a smaller schema with only the
relevant tables for the group.

This stage is right for you if:

You want to get democratized and enable others in your company to explore and
understand data themselves
You’re prepared to teach and enable business users in your company - hopefully using
the many resources of The Data School
You have projects that require different formats of the source of truth for easier use
Having truly informed employees is important to your company’s competitive success

You’ve outgrown this stage if:

You can’t really! You can make any number of marts, and even put leveling in your marts
if you’d like. Implementing this stage will result in a complete, well architected and
governed stack that will continually evolve and support your informed competitive
company.

Five reasons to build a Data Mart

1. Relevance to use cases. Limiting the schema to the tables that you need allow you to
parse the schema easily.

2. Accessible to a variety of people and teams. Data marts allow you to expose more people
to data without overwhelming them.

3. Customized architecture for different use cases. Aggregations, metric calculations, and
PII can all be handled individually for teams.

4. Maintainable with less time and effort. Having the data monitored by team leads makes
it easier to identify data issues.

5. Separated levels of data access. Easily protect sensitive data by limiting what teams can
see in their data marts.

This section of the Data Governance book will explain why you should create data marts, and
how to implement them so that you get all the benefits they can deliver your business. Before
we dive in further let’s look at the data issues you are facing with a Data Warehouse.

The Problem with Data Warehouses

As an organization scales the amount of data it is tracking, the number of people who want to
access it scale too. This results in more people with less context about a large portion of the
schema.

We want to go from a complex schema:

To a siloed schema, where each department has the data they need:

https://dataschool.com/

So while going from Lake to Warehouse was mostly about cleaning up tables, going from
Warehouse to Marts is about cleaning up schemas. Different departments need different parts
of the Data Warehouse schema.

How Data Marts are different from Data Warehouses

Use modeling to create separate schemas where the tables are provided to the appropriate
team or individual. These will be your company’s Data Marts.

The table structures should be the same, as the data should have been cleaned at the Data
Warehouse stage. Data Marts are not very different from your Data Warehouse since the heavy
lifting was already done. Data Marts make it easier for people within departments to navigate
the schema and provide extra insight of the data for that department.

Summary

Data Marts make your data:

Relevant to your job and use cases
Accessible to a variety of people and teams
Customized architecture for different use cases
Maintainable with team leads
Separated to protect sensitive information

A Data Lake is a pile of products in your building.

A Data Warehouse is those products sorted, shelved, and tagged.

A Data Mart is those products shipped out to relevant stores for sale.

Data Mart Implementation
As companies grow, the amount of data and the number of sources they have will also increase.
This leads to your Data Warehouse having numerous schemas that can become difficult to
navigate. Moving from a Data Warehouse to Data Marts reduces the scope of access and makes
it easier for users to find the data they need. Data Marts can be created in five steps.

1. Views

Marts should be created with Views, not by creating new tables.

For most companies there is no need to materialize views as the performance should not be
that different. However if you are running into performance issues it can be worth trying
materialized views.

2. Use the Data Warehouse

Any large cleaning should be avoided at this stage. You should be selecting the relevant views
and filtering out unnecessary columns from the Data Warehouse to build out each Data Mart.

CREATE VIEW
SELECT *
FROM DataWarehouse.View

Most if not all of the cleaning should have occurred when going from the Lake to the
Warehouse, if there is a cleanliness issue address it with modeling in the Warehouse stage.

If you do want to do some additional modeling to create aggregations for performance reasons
that is fine, and if you want to combine data to make it easier to analyze we recommend using
the wide table approach versus implementing something more complex like star schema.

3. No Star Schema

The performance benefits of star schema no longer exist. It is a lot of work to implement.
While some people argue it is easier to query after being set up this way, modern BI tools such
as Chartio have created interfaces to the data which solve problems such as complex joins.

4. Segment tables

Determine how you are going to split the data into different Data Marts. Common ways
include:

Department
Product Line
Use Case
Region
Security considerations

Create a matrix that contains the table names and the segments you are splitting up the data
by to determine which group has access to what. Then you can create the relevant views for
each Data Mart.

5. Access Update

Prior to implementing Data Marts, you likely had provided all of these groups access to the
Data Warehouse. You should remove everyone’s Data Warehouse access by default and grant
them access to the mart or marts they belong to.

A few people might need to retain access to both. Let them ask so that you know who has
access to what. These people may still want to query the Data Warehouse when they want to
analyze data that would span multiple marts.

Summary

Use Views
Don’t deviate that much from the Data Warehouse Views
Do not use a Star Schema
Segment your marts

https://fivetran.com/blog/obt-star-schema

Update access to be at the mart level instead of warehouse

Data Mart Maintenance
Now that you have Data Marts set up, you will need ongoing maintenance to get the most out
of your data. The first step is to establish a mayor per mart that will be responsible for carrying
out the maintenance tasks for their mart:

Communicate and educate the team
Identify issues
Identify new needs

Establish Mart Mayors

This role is similar to the Data Governor for the Data Warehouse. Data Governors delegate
down to Mayors, who in turn, take care of Governor tasks at the mart level. Mayors, therefore,
communicate with and educate the team using their mart. They are responsible for identifying
issues in the data that exist in their mart. They also should be the ones creating requests to get
more data sources or tables added to their mart.

An Ideal Mayor

Communicate and educate team

Different teams have different needs, but some common threads include teaching SQL skills or
how to use your BI tool. Mayors should document and share data quirks that show up in
common queries. Note, however, that you should try to address these quirks with modeling at
the Data Warehouse stage.

We wrote a book on how to teach SQL if you need assistance in explaining how JOINs,
Aggregations, or subqueries work.

Identify issues

There are two types of issues you will need to investigate as a Mayor of a Data Mart.

Data that doesn’t make sense
Common data errors

Data that doesn’t make sense

Spike

Something to pay attention to are numbers that are much different from the day before, but
not caused by any changes on your end. If traffic to your website doubles in a day, it is likely
caused by something and is not just a fluke. The spike may have been caused by a new
marketing campaign, a bug, or potentially a Google search algorithm update. You should
explore these possibilities in that order.

No Spike

Another point of interest are numbers that are not changing even though changes have been
made. If you launched a new marketing campaign and the numbers are not going up, that
could be due to a bug or poor campaign performance. They should be investigated in that

https://dataschool.com/how-to-teach-people-sql/
https://dataschool.com/how-to-teach-people-sql/sql-join-types-explained-visually/
https://dataschool.com/how-to-teach-people-sql/how-sql-aggregations-work/
https://dataschool.com/how-to-teach-people-sql/how-sql-subqueries-work/

order. Often the tracking was not set up correctly or the link in the advertisement was going to
the wrong place.

Conflicting numbers

Sometimes metrics can be showing conflicting numbers even though they are measuring the
same thing. If you see the number of new trials in HubSpot and your production database are
different, the rule of thumb is to trust the data source closest to the event that is being
tracked. In this case, it would be production.

SELECT COUNT *
FROM USER
WHERE Trial_Start > NOW()::date - 7
 AND Email != “%chartio.com”

vs.

SELECT COUNT *
FROM USER
WHERE Trial_Start > NOW()::date - 7

Oftentimes people’s calculation of a metric will differ because of the following reasons: They
are calculating it based on a different formula, the data source they are using is different, the
data is being filtered differently, or there is an error in their calculation.

Common data errors

New field or value not cleaned (nulls, encoded, wrong format, etc.)
No new data
All queries on a data source erroring out
Performance

New field or value not cleaned

You will likely notice when there is a new column in one of your views that is not very clear.
You should raise this to the Data Governor so that they can apply the necessary cleaning to it
at the Data Warehouse stage. Avoid doing additional cleaning at the Mart level because others
may need this field as well. Having a single version of it helps to make sure analyses are
consistent.

This can also happen when a new option is added to a field and it is encoded in an unreadable
way. Follow the same process to get it updated at the Data Warehouse level.

No new data

If your query stops producing data after a specific date, you will need to investigate. This can
be caused by a bug, a field being renamed, or the data source changing. This is more common
than you would think. For instance, if you update a URL the data associated with the previous
name will cut off. You can work around this within your SQL query.

For example, when Chartio moved its URL from Chart.io to Chartio.com we needed to use:

SELECT
CASE WHEN page_tracking.url LIKE 'www.chart.io'
 THEN 'www.chartio.com'
 ELSE page_tracking.url
 END AS “Page”,
to_char(page_tracking.viewed_at_date, ‘YYYY-MM’) AS “Month”,
COUNT(distinct page_tracking.view_id) as “Views”
FROM page_tracking
GROUP BY 1
ORDER BY 2 ASC

You can also implement this as a more permanent fix at the Data Warehouse stage. One note of
warning here is that sometimes you want to preserve this cut off to remember the name was
changed, so think through the implications before making this modeling decision. If you aren’t
sure why the data cut off, consult the Data Governor or your engineers to find out what is
going on.

All queries on a data source are erroring out

This happens for a few reasons: the source has been deprecated, the source had an update
changing its data structure, or a bug. This is something to communicate out to your team
quickly as it can prevent a ton of data from being used.

Performance

If queries by you or your team start to take over a minute to run, you should investigate. Can
the queries be optimized? Do we need to spin up more clusters? Or, do we need to do some pre-
aggregation?

These are all fairly advanced solutions. To learn how to optimize the SQL, read our book titled
SQL Optimization. To spin up more clusters you will need to consult with your engineering team

and the Data Governor. To do pre-aggregation you should consult with the Data Governor and
create a new view at the Data Warehouse level so others can use this newly formed view.

Identify new needs

Data is never a static thing. As new features roll out, new tools get used, objectives are set, and
new data needs will emerge for your team. Do not assume that your mart will be updated when
any of these changes happen. You need to proactively advocate to make sure your mart is
updated in a timely manner.

Extras

Evaluating Data Stack Technologies

What is a Data Stack?

In software development, a Stack is a combination of technologies that together solve a
problem. Rarely does one technology solve it on its own. Stacks are usually given names
relevant to the problem that they solve. For example, a Web Stack is the set of technologies
that host an application that can be accessed via a website. We need to know about the front
end technologies used and the back end. We could say “our Web Stack is Cassandra, Django,
React” which gives them a high-level overview.

We can apply the Stack concept to describe solutions in domains other than web development.
Here we will describe the Data Stack, which takes data from a raw form to an insight.

The Data Analytics Problem

Every software tool spins off data: your application, Google Analytics, Salesforce, and so on. In
order to use this data to find insights you need a Data Stack that performs the following
functions:

1. Ingestion - Accept new data
2. Storage - Store and retain data
3. Conversion - Prepare data for future use
4. Recall - Enable basic access to data
5. Computation - Calculate metrics from pre-processed data
6. Presentation - Format results into tools that improve human understanding

Normally the elements of a Data Stack are composed to perform these functions in this order,
with raw data flowing into the ingestion point and becoming more and more refined until it
finally is prepared enough for people to understand. We will use a visual to show how different
BI tools map to these functions and what level of capabilities they have for that function. Here
is an example graph:

Fitting Technologies Into the Data Stack

Microsoft Excel

Technologies such as Microsoft Excel could be your entire Data Stack. It has the functionality
to do each step.

It can ingest a csv, store an xlsx file, convert the data to be more usable, recall the data so it
can be used, compute aggregations on the data, and visually present the information in a
chart. Let’s take a look at how well it performs each part of the Data Stack:

Let’s examine why we rated ingest low and present high.

Ingest

Capacity - Being a desktop application, Excel cannot handle significant volumes of data.
It is limited by the computer it is installed on and Excel itself has a maximum row count
of 1 million. When tasked with processing a low volume of data Excel can do quite well
and is frequently used for analytics.
Data Formats - Excel can easily work with excel files and comma or tab separated files,
but it does not work well with JSON, XML, or many other file types.

Presentation

Data Visualization - When it comes to presentation, Excel has most data visualization
types. It also can be used to present interactive calculations and tables of data for people
to consume. Excel’s scale limitations are not an issue for this phase alone because
visualizations are not built directly from large data sets: a chart that includes thousands
of data points will likely be unreadable.

Postgres

Why does Postgres do a better job at Store and Compute?

Store

Postgres can easily store a volume of data that exceed Excel’s capacity
Data stored in Postgres is generally easier to backup

Compute

It is easier and cheaper to dedicate more powerful hardware to Postgres than to
distribute more powerful desktop or laptop computers to staff that use Excel
Postgres is better at handling relational logic, which can be a significant component of
preparing data sets for presentation materials

At this point many readers might be thinking that Excel has advantages in Compute that I have
glossed over to make my point. This is true, and the suitability of technology to perform each
of these workloads cannot be reduced to a single number. The capabilities of each technology
have been oversimplified so that it is easier to make simple illustrations that help to explain
how different technologies complement one another.

Chartio

From the above we see that Postgres does not have any ability to Present data. A tool like
Chartio can help with this:

Compute

Chartio supports an interface for interacting with data stored in databases like Postgres
that is easier to work with than what those databases support by themselves
Chartio can perform a range of calculations on query results at a small scale, but most of
the computational load has to be handled by a database

Present

Chartio has many features related to producing and sharing meaningful and interactive
data visualizations

The combination of collection of meaningful data sets from a database and production of good
visualizations from these data sets makes Chartio an excellent complement to most databases.

Meeting Your Requirements

Suppose that a mobile game developer wants to track user behavior within the context of the
mobile app. This might require tracking dozens of distinct events per session that might
represent actions like completing a level, viewing a screen, or clicking on a banner ad. If this
game attracts thousands of users per day, the volume of raw activity data will exceed Excel’s
capability in short order. A detailed analysis of the requirements might produce a rough
profile such as this:

Where the need in excess of Excel’s capabilities is largely due to raw data volume. Naturally
this suggests that a solution that can handle a greater volume of data would be appropriate. A
simple combination of Postgres and Chartio might have combined capabilities that look
roughly like this:

Growing with the Business

As a business or product grows it is natural for demands on the Data Stack to change. One way
to accommodate changing requirements is to make the Stack more capable in key areas by
adding or replacing technologies in the Stack. In the next chapters of this book, we will explore
the evolution of a Data Stack in more detail. We will explore which technologies enhance each
other and which are incompatible.

There are some key factors to keep in mind when building your Stack in a growing
organization:

1. Use technologies that are easily configurable to work with a range of complementary
technology. Otherwise there may be few choices for critical parts of your Stack.

2. Having one component cover a wide range of functions potentially complicates
upgrading it and may make it more likely that it has to be replaced.

Communication is the Goal

More powerful Data Stacks tend to be more complicated, and this complication naturally
makes it harder to understand things well enough to know how to contribute or how to
evaluate risk. With a written out Data Stack, it is easier to explain how the various technologies
work in concert to accomplish the end goal.

This model presents a fairly simplified view of the journey of data from raw feeds to
presentation. It allows more people in the organization to understand the problems and
solutions of data analytics from a high level.

ETL vs ELT
How should you get your various data sources into the data lake? Well there are two common
paradigms for this.

1. ETL is the legacy way, where transformations of your data happen on the way to the
lake.

2. ELT is the modern approach, where the transformation step is saved until after the data
is in the lake. The transformations really happen when moving from the Data Lake to the
Data Warehouse.

ETL was developed when there were no data lakes; the staging area for the data that was being
transformed acted as a virtual data lake. Now that storage and compute is relatively cheap, we
can have an actual data lake and a virtual data warehouse built on top of it.

We recommend ELT because

1. We care more about Extracting and Loading the data into a common place at the Data
Lake stage.

2. Data on a lake will go through heavy transformations during the next stage, so there is
no need for complex logic before the data is loaded. The transformation step of ELT
happens in the data warehouse.

3. We can end up with a much simpler architecture which means less problems and less
maintenance.

4. Data lineage becomes easier to track as complex transformations are not happening
prior to loading the data into the lake.

Light transformation of the data before loading the data into the lake might still be necessary:

Column Selection: Select the data that really matters. For example, not everything in
Salesforce needs to be synced.
Privacy reasons: for example, filtering out columns that contain PII (personally
identifiable information). Instead of filtering, you might want to hash PII data so they
can be used for your analytics.

The above transformation cases can be included in the ELT paradigm and are offered by most
commercially available ELT vendors.

Acknowledgments & Contributions
This book has been a large effort by a number of people and continues to evolve with
community involvement. We aim to keep this book always “Modern” with updates,
contributions, reviews easily submitted via email or committed through Github - where the
source for this whole site is kept.

Thank you’s

I want to give a special thanks to Matt David, the Head of the Data School for working on the
start of this for so many hours with me. He has project managed, refined ideas and written the
majority of this book and continually recruits community involvement. His passion for
educating the masses on data is truly inspirational, and a joy to work with.

I also want to thank Tim Miller, who wrote many chapters here and worked many stressful
hours on content with me. Thank you Tim for your constant drive and passion for both
learning and educating.

Also I’d like to thank the rest of the Chartio Data Advisor team, who each contributed a chapter
and who daily take the learnings in this book directly to our customers.

Thank you Steven Lewis for your always excellent design and illustrations that honor this book
and site. Thank you Eleanor Preston for helping me work through this framework on so many
customer visits - and persistently waiting for us to get it published!

Thank you Kostas Paradalis of Blendo for your article on ETL vs ELT.

How to contribute

Our goal is to continually make this book better and kept modern. We would like to expand it,
like a wiki, to cover more topics, go more in depth, share more real company examples, and be
better reviewed and edited.

Few are complete “experts” in all of the areas of modern data governance, and the landscape is
changing all of the time. If you have a story to share, or a chapter you think is missing, or a
new idea - email us or create a pull request with the edits on our github repo.

https://www.blendo.co/
https://dataschool.com/data-governance/etl-vs-elt/
mailto:mdavid@dataschool.com
https://github.com/chartio/dataschool

