
OWASP Top 10
2025

You’ll see why they’re so dangerous, and most importantly, how you can
banish every one of them from your software forever.

The No-BS Guide to
Defending Your
Applications Against the

securecodewarrior.com

The ten most common security vulnerabilities don’t stand a chance

against sharp, security-focused developers like you. This is your ultimate

field guide to understanding each infamous entry in the OWASP Top 10,

gaining insight into how each bug and vulnerability category operates.

https://owasp.org/www-project-top-ten/

2

Index
You have received a series of missions from Secure Code Warrior. Learn how your
targets work, understand their motives, and finally, destroy them. Don’t forget to
check out the walkthrough videos after reading about each vulnerability.

1 Broken Access Control

2 Security Misconfiguration

3 Software Supply Chain Failures

4 Cryptgraphic Failures

5 Injection

6 Insecure Design

7 Authentication Failures

8 Software or Data Integrity Failures

9 Logging and Alerting Failures

10 Mishandling of Exceptional Conditions

GOOD LUCK, NEW WARRIOR

3

1 Broken Access Control

When you build a business application, whether for internal
use or external use by your customers, you probably don’t
let every user perform every single function. If you do you
may be vulnerable to broken access control.

Business applications have a rich set of functions, sometimes
up to hundreds. However each of these functions should not
be used by every single user in the system.

Broken access control occurs when application code does not have the proper security or
access checks in place. It can also occur when an application is misconfigured in some way that
allows access to functions or pages to which the user should not have access.

If you handle the finances of your company you may have access to deposit money into
certain accounts or transfer money between your company’s accounts. However, you
shouldn’t have access to withdraw money from those accounts or transfer money to accounts
outside of your company’s control. If the proper access checks are not present, then your
employees may be able to do more functions than necessary.

These checks can either be done within the code itself or some configuration files. For
example, there may be XML configuration files which tells the web application framework
which users are allowed to access which pages. This ensures that only the right people are
seeing the right functions.

Let’s take a look at broken
access control is, why it’s so
dangerous, and how to fix it.

Understand Broken Access Control

Watch Video

https://www.youtube.com/watch?v=Mq7svP7J2YY

4

 1 Broken Access Control Continued

Why Broken Access Control is Dangerouscrisis_alert
Consider an example. An attacker has realized that your user account creation code can be
manipulated to allow the attacker to create an admin user with a simple post request. They
can send a request with the username and password and then change the request on route to
include the role of admin in the URL as a parameter or in the body of the request. The attacker
logs into the application and is instantly given administrator rights.

Role-based access control (RBAC) is a very effective tool for implementing sound access
control. Those using Active Directory may be familiar with the idea of creating groups and
giving access to certain items to the group instead of the individual. Applications work the
same way, using roles to define who is allowed to see what.

Defeat Broken Access Control

$
It doesn’t always have to be a malicious attacker attacking a
system. Without proper access controls, sensitive information
that shouldn’t be shared between departments may leak out.
Imagine if any employee in the company could see HR payroll
data or financial data. What would happen if any employee
could see that layoffs are coming because of the poor financial
situation of the company? This could be damaging to your morale
and your company’s reputation.

Sensitive information from the customers could also be lost. Companies in the healthcare
industry often have personal health information of customers that use their services. Be
careful not to accidentally expose personal information because of a lack of access control.

For example, if your system gives users the ability to request a record of their health
information, do they also have the ability to request and see the health information of others?
If the URL contains a customer ID number, attackers could increment that customer ID
number over and over again until they find one that matches another customer, thus revealing
their personal data.

5

 1 Broken Access Control Continued

This has two advantages. First, a function doesn’t have to be changed when somebody leaves
the administrator role. If somebody previously was an administrator and no longer is then you
simply place a new person into the administrator role and remove the previous person from
the role. The code checks to see if the user has the administrator role instead of checking to
see if each individual user has access to a certain page or function.

The second benefit is avoiding a maintenance nightmare. Access control that is so granular
that every person has associations with every single possible function or page will be
impossible to manage over time. Roles make things easier because multiple people can be
added to a role. One role may have the entire company while another role has only five people.
This makes managing the roles much easier because there will be fewer roles to manage. A
company of 10,000 people could have only 100 roles instead of 10,000 times the number
of functions in your application. Research your chosen application framework to see what
options exist for robust access control.

Broken access control can leave your data and your application wide open for attack and
exploitation. Customer data that is not protected properly could lead to a massive data
breach, hurting your reputation and your revenue.

Broken access control could also lead to account takeover if attackers are able to access
functionality they shouldn’t access. Use proper functional level access control and you’ll keep
your application safe from malicious attackers and even accidental insiders. Then, you’ll know
that your data and your functions are safe and secure.

Protect Your Sensitive Functions

In the OWASP Top 10 2021 list, Server-Side Request Forgery (SSRF) was a category unto
itself, ranking tenth. Now folded into the Broken Access Control class as a prominent Common
Weakness Enumeration (CWE), it represents a significant vulnerability that can be complex to
solve without direct guidance, so please check out the guide below and keep practicing.

A Note on Server-Side Request Forgerynote_add

6

 1 Broken Access Control Continued

The goal of many SSRF attacks is to cause major disruption, or to come away with some
serious paydirt in the form of leaking information and stealing valuable data. This vulnerability
is dangerous, and the consequences of successfully compromising HTTP servers are far-
reaching. Alarmingly, the nature of this particular attack type means it can bypass standard
access control methods like VPNs and firewalls. With the rapid adoption of cloud-based
services, it has the potential to seriously infect software infrastructure and cause serious
headaches for the security team, not to mention customers and users.

To that end, we’ll discuss three key aspects of SSRF attacks:

How they work

Why they are so dangerous

How you can put defenses in place to stop them cold

double_arrow	
double_arrow
double_arrow

Essentially, a successful SSRF attack allows a threat actor to trick a server into performing
requests on their behalf. These forgeries typically open the door for things like port scanning,
file retrieval, and access to internal services that were never supposed to be visible to those
outside of the organization.

How Do SSRF Attacks Work?

Good news, though. With the right
knowledge, this insidious pest can
be snuffed out before it even has
a chance to open doors for threat
actors looking to cause trouble.

Watch Video

https://www.youtube.com/watch?v=1iHCZybiDcw

7

 1 Broken Access Control Continued

This vulnerability can be exploited as a result of an application not restricting the type of
resources it can access by location, or file type. For example, let’s say a production studio
has a website containing showreels and samples of their work. Inevitably, they’d like potential
clients to see high-resolution images and video, and make them available to view. An attacker
notices that the file paths point to an external, separate server, and is able to guess the
studio is utilizing cloud services to deal with the huge file sizes associated with high-res video.
They could then attempt to request the instances’ metadata and user data. These URLs are
supposed to be inaccessible, and if discovered, result in sensitive data exposure like access
tokens and public keys, not to mention potential data relating to individual users.

Our hypothetical production studio has a subdomain, watch.vulnerablestudio.com, that uses
multiple servers. Potential clients can visit watch.vulnerablestudio.com to browse through their
portfolio, but the full, high-res videos sit on another server, to which browsing users don’t have
direct access. However, it can be assumed that the server behind watch.vulnerablestudio.com
does.

When you click on a project, the studio’s main server makes a secondary request. We’ll go
ahead and use a common GET request as an example, with the URL visible in your browser’s
address bar: watch.vulnerablestudio.com/?url=video-storage.vulnerablestudio.com/
ZombieSurfers/.

Going to the URL in full provides you with the video and details of the “Zombie Surfers”
project. If an attacker can work out that they don’t have direct access to http://video-storage.
vulnerablestudio.com/ZombieSurfers/, but watch.vulnerablestudio.com does, they have now
found a way to use the studio’s main server as neutral territory. They can potentially breach
this webserver and access restricted assets and data.

x x
x

8

 1 Broken Access Control Continued

If watch.vulnerablestudio.com has been configured with lax security controls and is vulnerable
to SSRF, an attacker could simply navigate to watch.vulnerablestudio.com/?url=file:///etc/
passwd, and it’s highly likely the vulnerable server now returns the sensitive and restricted
contents of the /etc/passwd file if it’s poorly configured and insecure.

Why is SSRF Dangerous?crisis_alert
Depending on the server and how it’s configured, the attacker could enumerate ports to
discover all services on the localhost address, use file:// or smb:// to request files on these
internal directories, and download files from internal FTP servers. Sadly, that’s just the tip of
the iceberg. Aside from exposure and theft of sensitive data, successful SSRF can allow abuse
of internal services to conduct further attacks, such as Remote Code Execution (RCE) or
Denial of Service (DoS). All scenarios are reputational poison, highly disruptive, and in the age
of GDPR and more focus on data privacy and safety than ever before, potentially financially
devastating.

It is imperative that developers are keeping security front-of-mind in their day-to-day
processes, and best practices would dictate that the potential attack surface is kept as small
as possible. In the case of squashing SSRF, this means employing a zero-trust approach to
access control, leaving no room for APIs that are too talkative, account levels with unnecessary
access, or the potential for end-users to manipulate inputs. This can take the form of:

How Do I Stop SSRF Attacks?

Comprehensive whitelisting; restrict requests made by the server to whitelisted
locations wherever possible.

Verifying the requested file type matches that which is expected.

Displaying a generic error message in the event of failure.

Restrict requests to only approved URL schemas.

playlist_add_check_circlek_
playlist_add_check_circlek_
playlist_add_check_circlek_

playlist_add_check_circlek_

9

 1 Broken Access Control Continued

With such a high potential payout and applications becoming more complex and integrated by
the day, SSRF attacks will likely never perish entirely, but we hope you learned why they are so
persistent, and how to block them from your network for good.

Slamming the Door on SSRF

For further reading, you can take a look at
the OWASP Server-Side Request Forgery
Prevention Cheat Sheet which serves
as a living document chronicling this
vulnerability as it evolves.

https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html

10

2 Security Misconfiguration

The term security misconfiguration is a bit of a catchall
that includes common vulnerabilities introduced due to the
application’s configuration settings, instead of bad code.
The most common ones normally involve simple mistakes
that can have big consequences for organizations that
deploy apps with those misconfigurations.

Some of the most common security misconfigurations
include not disabling debugging processes on apps before
deploying them to the production environment, not letting
applications automatically update with the latest patches,
forgetting to disable default features, as well as a host of
other little things that can spell big trouble down the road.

The best way to combat security
misconfiguration vulnerabilities
is to eliminate them from your
network before they are deployed
to the production environment.

Watch Video

In this chapter, we will learn:

How hackers find and exploit common security misconfigurations

Why security misconfigurations can be dangerous

Policies and techniques that can be employed to find and fix
security misconfigurations

double_arrow
double_arrow
double_arrow

https://www.youtube.com/watch?v=iSYD7vOlSJs

11

 2 Security Misconfiguration Continued

There are a lot of common security misconfigurations. The most popular ones are well-known
in hacker communities and are almost always searched for when looking for vulnerabilities.
Some of the most common misconfigurations include, but are not limited to:

Some misconfigurations are well-known and trivial to exploit. For example, if a default
password is enabled, an attacker would only need to enter that along with the default
username to gain high-level access to a system.

Other misconfigurations require a bit more work, such as when debugging features are left
enabled after an app is deployed. In that case, an attacker tries to trigger an error, and records
the returned information. Armed with that data, they can launch highly targeted attacks that
may expose information about the system or the location of data they are trying to steal.

How Do Attackers Exploit Common Security
Misconfigurations

Not disabling default accounts with well-known passwords.

Leaving debugging features turned on in production that reveal stack traces or other
error messages to users.

Unnecessary or default features left enabled, such as unnecessary ports, services,
pages, accounts, or privileges.

Not using security headers, or, using insecure values for them.

playlist_add_check_circlek_

playlist_add_check_circlek_

playlist_add_check_circlek_

playlist_add_check_circlek_

Why is Security Misconfiguration so Dangerous?crisis_alert
Depending on the exact security misconfiguration being exploited, the damage can range
from information exposure to complete application or server compromise. Any security
misconfiguration provides a hole in defenses that skilled attackers can leverage. For some
vulnerabilities, such as having default passwords enabled, even an inexperienced hacker can
exploit them. After all, it doesn’t take a genius to look up default passwords and enter them!

12

 2 Security Misconfiguration Continued

The best way to avoid security misconfigurations is to define secure settings for all apps and
programs being deployed across an organization. This should include things like disabling
unnecessary ports, removing default programs and features not used by the app, and
disabling or changing all default users and passwords. It should also include checking for
and dealing with common misconfigurations, such as always disabling debugging mode on
software before it hits the production environment.

Once those are defined, a process should be put in place, one that all apps go through before
they are deployed. Ideally, someone should be put in charge of this process, given sufficient
power to enforce it, and also responsibility should a common security misconfiguration slip
through.

Removing the Threat Posed by Security Misconfigurations

More Information About Security Misconfigurations

For further reading, you can take a look at the
OWASP list of the most common security
misconfigurations. You can also put your
newfound defensive knowledge to the test
with a free demo of the Secure Code Warrior
platform, which trains cybersecurity teams to
become the ultimate cyber warriors.

https://owasp.org/Top10/2025/A02_2025-Security_Misconfiguration/
https://www.securecodewarrior.com/solutions/engineering-team

13

3 Software Supply Chain Failures

With the much-anticipated arrival of the 2025 OWASP Top Ten, enterprises
have a couple of new threats to be extra wary of, including one that lurks near
the top of the list. Software Supply Chain Failures, which debuts as a new
category but isn’t entirely new, sits at No. 3 on the Open Web Application
Security Project’s quadrennial list of the most serious risks to web application
security. It’s a risk that enterprises must take very seriously, if they aren’t already.

Software Supply Chain Failures grew out of a category in the previous list from
2021, Vulnerable and Outdated Components, and now it includes a broader
range of compromises across the software ecosystem of dependencies, build
systems and distribution infrastructure. And its appearance on the list should
come as no particular surprise, given the damage caused by high-profile supply
chain attacks such as SolarWinds in 2019, the Bybit hack earlier this year, and
the ongoing Shai-Hulud campaign, a particularly nasty, self-replicating npm
worm wreaking havoc on exposed developer environments.

The OWASP Top Ten has generally been consistent, which befits a list that
appears every four years, albeit with updates in between. There usually is some
shuffling within the list—Injection, a longtime resident, drops from No. 3 to No.
5, for instance, and Insecure Design drops two places to No. 6, while Security
Misconfiguration jumps from No. 5 to No. 2. Broken Access Control continues
to stake out the top position. The 2025 edition has two new entries, the
aforementioned Software Supply Chain Failures and Mishandling of Exceptional
Conditions, which enters the list at No. 10.

https://owasp.org/Top10/2025/0x00_2025-Introduction/
https://owasp.org/Top10/2025/A03_2025-Software_Supply_Chain_Failures/
https://owasp.org/Top10/2021/A06_2021-Vulnerable_and_Outdated_Components/index.html
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://thehackernews.com/2025/02/bybit-hack-traced-to-safewallet-supply.html
https://www.aikido.dev/blog/shai-hulud-strikes-again-hitting-zapier-ensdomains

14

 3 Software Supply Chain Failures Continued

Here, we take a close look
at the new supply chain
vulnerabilities entry.

Watch Video

Software Supply Chain Failures is a somewhat unusual category on the list in that, among the
10 entries, it has the fewest occurrences in OWASP’s research data, but it also had the highest
average exploit and impact scores resulting from the five Common Weakness Enumerations
(CWEs) in the category. OWASP said it suspects the category’s limited presence is due
to current challenges in testing for it, which could eventually improve. Regardless, survey
respondents overwhelmingly named Software Supply Chain Failures as a top concern.

Most supply chain vulnerabilities grow out of the interconnected nature of doing business,
involving upstream and downstream partners and third parties. Every interaction involves
software whose components (aka dependencies or libraries) could be unprotected. An
enterprise can be vulnerable if it doesn’t track all versions of its own components (client side,
server side or nested), as well as transitive dependencies (from other libraries) ensuring that
they are not vulnerable, unsupported or out of date. Components typically have the same
privileges as the application, so compromised components, including those that come from
third parties or open-source repositories, can have a far-reaching impact. Timely patching
and updates are essential—even regular monthly or quarterly patch schedules can leave an
enterprise exposed for days or months.

Likewise, the lack of a change management process with your supply chain can create
vulnerabilities if you are not tracking Integrated Development Environments (IDEs) or changes
to your code repository, image and library repositories, or other parts of the supply chain. An
organization needs to harden the supply chain by applying access control and least-privilege
policies, ensuring that no individual can create code and deploy it to production without
supervision, and that no one can download components from untrusted sources.

Vulnerabilities Can Crop Up Almost Anywhere

https://www.youtube.com/watch?v=UVW1YhzfYUY
https://www.securecodewarrior.com/press-releases/nist-updates-software-supply-chain-security-guidance

15

 3 Software Supply Chain Failures Continued

Supply chain attacks can take many forms. The
notorious SolarWinds attack began when Russian
attackers injected malware into an update to the
company’s popular network management software.
It affected about 18,000 customers. Although
the number of enterprises actually impacted was
closer to 100, that list included major corporations
and government agencies. The $1.5 billion Bybit
hack, traced to North Korea, involved compromised
cryptocurrency apps. The recent Glass Worm supply
chain attack involved an invisible, self-replicating code
that infected the Open VSX Marketplace.

Because supply chain attacks involve the interdependency of systems, defending against
them involves an all-encompassing approach. OWASP offers tips for preventing attacks,
including having patch management processes in place to:

Preventing Supply Chain Exploits

Know your Software Bill of Materials (SBOM) for all software and manage the SBOM
centrally. It’s best to generate SBOMs during the build, rather than later, using standard
formats, such as SPDX or CycloneDX, and to publish at least one machine-readable
SBOM per release.

Track all of your dependencies, including transitive dependencies, removing unused
dependencies, as well as unnecessary features, components, files and documentation.

Continuously inventory both client-side and server-side components and their
dependencies using tools, such as OWASP Dependency Check or retire.js.

Stay up to date on vulnerabilities, continuously monitoring sources such as the
Common Vulnerabilities and Exposures (CVE) website and the National
Vulnerability Database (NVD) and subscribe to email alerts for security vulnerabilities
related to the components you use.

playlist_add_check_circlek_

playlist_add_check_circlek_

playlist_add_check_circlek_

playlist_add_check_circlek_

https://www.darkreading.com/application-security/self-propagating-glassworm-vs-code-supply-chain
https://owasp.org/www-project-dependency-check/
https://retirejs.github.io/retire.js/
https://www.cve.org/
https://nvd.nist.gov/
https://nvd.nist.gov/

16

 3 Software Supply Chain Failures Continued

Use components obtained only from trusted sources over secure links. A trustworthy
provider, for instance, would be willing to work with a researcher to disclose a CVE the
researcher discovered in a component.

Deliberately choose which version of a dependency you will use and upgrade only when
you need to. Work with third-party libraries that have had their vulnerabilities published
in a well-known source such as NVD.

Monitor for unmaintained or unsupported libraries and components. If patching is not
possible, consider deploying a virtual patch to monitor, detect or protect against the
discovered issue.

Regularly update developer tooling.

Treat components in your CI/CD pipeline as part of this process, hardening and
monitoring them while documenting changes.

playlist_add_check_circlek_

playlist_add_check_circlek_

playlist_add_check_circlek_

playlist_add_check_circlek_

playlist_add_check_circlek_

Change management or a tracking process should also apply to your CI/CD settings, code
repositories, sandboxes, integrated developer environments (IDEs), SBOM tooling, created
artifacts, logging systems and logs, third-party integrations such as SaaS, artifact repository
and your container registry. You also need to harden systems, from developer workstations to
the CI/CD pipeline. Be sure to also enable multi-factor authentication while enforcing strong
identity and access management policies.

Protecting against software supply chain failures is a multi-faceted, ongoing endeavor in
the face of our highly interconnected world. Organizations must employ strong defensive
measures for the entire lifecycle of their applications and components in order to defend
against this rapidly evolving, modern threat.

17

4 Cryptographic Failures

Cryptographic failures refers to a category of sensitive data exposure-
related bugs. This kind of attack has been one of the most impactful
breaches over the past few years. There is a medium level of
sophistication required, and sometimes special equipment on the part
of the attacker, but it’s not overly hard for a hacker to pull off in many
cases, and tools exist to automate some of the attack functions.

Sensitive data exposure occurs whenever information that is only
meant for authorized viewing is exposed to an unauthorized person
in a nonencrypted, unprotected, or weakly protected state. Most of
the time this involves typical data that hackers want to steal such as
credit card numbers, user identification, business secrets and personal
information that might be protected by laws and industry regulations.

These days, nobody would store highly targeted information like that
without encryption. But with sensitive data exposure, hackers can
sometimes get at it anyway by indirectly attacking the encryption
scheme. Instead of trying to decrypt strong encryption directly, they
instead steal crypto keys, or attack data when it’s moved to a non-
encrypted state such as when it’s being readied for transport.

In this chapter, we will learn:

How attackers can trigger sensitive data exposure.

Why sensitive data exposure is so dangerous.

Techniques that can fix this vulnerability.

double_arrow
double_arrow
double_arrow

18

 4 Cryptograph Failures Continued

Watch Video
Sensitive data exposure normally happens when
sites don’t employ strong end-to-end encryption
to protect data, or when there are exploitable
flaws in the protection scheme. It can also
happen when the encryption used is particularly
weak or outdated.

Hackers will often try and find ways to get around
encryption if it’s not extended everywhere. For example, if a password database stores
information in an encrypted state, but automatically decrypts it when retrieved, a hacker might
be able to use one of the attacks we previously covered in these blogs, such as SQL or XML
injection, to order the database to perform the decryption process. Then the data would be
decrypted for the hacker, with no additional effort. Why try and break down a steel door when
you can just pickpocket the key?

Weak encryption is also a problem. For example, if credit cards are stored using an outdated
encryption scheme, it could be an issue if a hacker is able to use something like a file upload
attack to pull the entire database over to their computer. If the captured data was protected
using something strong like AES-256 bit encryption, then it would still be unbreakable even
if it landed in a hacker’s possession. But if weaker or outdated encryption is used, something
like the older DES standard, then a hacker with special equipment such as a rack of graphics
processing units (GPUs) can task them to break the encryption in a relatively short time.

How Do Attackers Exploit Data Exposure?

Why is Sensitive Data Exposure Dangerous?crisis_alert
Sensitive data exposure is dangerous because it lets unauthorized users see protected
information. If the data wasn’t important, it wouldn’t be protected, so any breach of that
protection is going to cause problems. It’s never a situation that an organization wants to find
itself facing.

https://www.youtube.com/watch?v=4hOej8A8D6o

19

How much trouble a sensitive data exposure can cause depends on the kind of data that gets
exposed. If user or password data is stolen, then that could be used to launch further attacks
against the system. Personal information exposure could subject users to secondary attacks
such as identity theft or phishing. Organizations might even find themselves vulnerable to
heavy fines and government actions if the exposed data is legally protected by statutes like
the Health Insurance Portability and Accountability Act (HIPAA) in the United States or the
General Data Protection Regulation (GDPR) in Europe.

Stopping sensitive data exposure begins with ensuring strong, up-to-date and end-to-end
encryption of sensitive data across an enterprise. This includes both data at rest and in transit.
It’s not enough to encrypt sensitive data while it sits in storage. If it is unencrypted before use
or before transport, then it can be exposed using a secondary attack that tricks a server into
unencrypting it.

Data in transit should always be protected using Transport Layer Security (TLS) to prevent
exposure using man in the middle or other attacks against moving data. And sensitive data
should never be cached anywhere in the network. Sensitive data should be sitting with strong
encryption in storage or sent using TLS protection, giving attackers no weak points to exploit.

Finally, do an inventory of the kinds of sensitive data that is being protected by your
organization. If there is no reason for your organization to store such data, then dump it. Why
expose yourself to potential trouble for no possible benefit? Data that isn’t maintained by an
origination can’t be stolen from it.

Eliminating Sensitive Data Exposure

More Information About Cryptographic
Failures Leading to Sensitive Data Exposure

For further reading, you can take a look at what
OWASP says about sensitive data exposure.

4 Cryptograph Failures Continued

https://owasp.org/Top10/2025/A04_2025-Cryptographic_Failures/

20

5 Injection

Injection vulnerabilities take many forms, and they have enjoyed the top spot in
the OWASP Top 10 for many years. However, they’ve now been knocked all the
way down to number three. Despite this, SQL injection in particular remains a
popular and dangerous bug (despite its old age) and this chapter will focus on
finding and fixing that one in particular. Scroll to the bottom of this chapter for
links to comprehensive guides on defeat NoSQL, OS Command, Email Header
and XQuery injection.

Now, let’s get started.

In simple terms, SQL (or Structured
Query Language) is the language
used to communicate with relational
databases; it’s the query language
used by developers, database
administrators and applications to
manage the massive amounts of
data being generated every day.

Our data is fast becoming one of the
world’s most valuable commodities...
and when something is valuable, bad
guys will want to get their hands on it
for their benefit.

Attackers are using SQL injection -- one of the oldest (since 1998!) and peskiest
data vulnerabilities out there -- to steal and change the sensitive information
available in millions of databases all over the world. It’s insidious, and developers
need to understand SQL injection (as well as how to defend against it) if we are
to keep our data safe.

https://www.iflscience.com/how-much-data-does-the-world-generate-every-minute-42939
https://www.iflscience.com/how-much-data-does-the-world-generate-every-minute-42939
https://phrack.org/issues/54/8#article

21

 5 Injection Continued

We’ll discuss three key aspects of SQL injection:

Why SQL injection works.

Why it’s so dangerous.

How to defend against it.

double_arrow
double_arrow
double_arrow

SQL injection can be understood by using one word: context. Within an application, two
contexts exist: one for data, the other for code. The code context tells the computer what to
execute and separates it from the data to be processed.

SQL injection occurs when an attacker enters data that is mistakenly treated as code by the
SQL interpreter. One example is an input field on a website, where an attacker enters “‘ OR 1=1”
and it is appended to the end of a SQL query. When this query is executed, it returns “true” for
every row in the database. This means all records from the queried table will be returned.

The implications of SQL injection can be catastrophic. If this occurs on a login page, it could
return all user records, possibly including usernames and passwords. If a simple query to take
data out is successful, then queries to change data would too.

Let’s take a look at some vulnerable code so that you can see what an SQL injection
vulnerability looks like in the flesh. Check out this string of code:

Eliminating SQL Injection

String query = “SELECT account balance FROM user_data WHERE
user_name = “+ request.getParameter(“customerName”);

try {
	 Statement statement = connection.createStatement(...);
	 ResultSet results = statement.executeQuery(query);
}

22

 5 Injection Continued

The code here simply appends the parameter information from the client to the end of the
SQL query with no validation. When this happens, an attacker can enter code into an input
field or URL parameters and it will be executed.

The key thing is not that attackers can only add “‘ OR 1=1” to each SELECT query but that an
attacker can manipulate any type of SQL query (INSERT, UPDATE, DELETE, DROP, etc.) and
extend it with anything the database supports. There are great resources and tools available in
the public domain that show what is possible.

We’ll learn how to correct this issue. First, let’s understand how much damage can be done.

0101010010100101000100000111010100101001010100101010101010010101010100010101000101010010101010101

1010101001010101010101010101010100111011111010100101010010101010101010101010101010100010101010101010101010

010101010101010010010100010101010100101001010101001010010100010101010101010101001010101010000101010

101000101010101010101010101010101000101010010101010110101010101010010101001010101010001010101010101010

01010100101010101011010100100010101011101010110101010101

01001010100101001010100101010010101001010101001010101

0101110100101000111100101110001010101010010100101010101

23

 5 Injection Continued

Why SQL Injection is So Dangerouscrisis_alert

Illinois Board of Election website was breached due to SQL injection vulnerabilities. The
attackers stole the personal data of 200,000 U.S. citizens. The nature of the vulnerability
found meant that the attackers could have changed the data as well, although they didn’t.

Hetzner, a South African website hosting company, was breached to the tune of
40,000 customer records. A SQL injection vulnerability led to the possible theft of every
customer record in their database.

A Catholic financial services provider in Minnesota, United States, was breached using
SQL injection. Account details, including account numbers, of nearly 130,000 customers
were stolen.

Sensitive data can be used to take over accounts, reset passwords, steal money, or commit
fraud.

Even information not considered sensitive or personally identifiable can be used for other
attacks. Address information or the last four digits of your government identification number
can be used to impersonate you to companies, or reset your password.

When an attack is successful, customers can lose trust in the company. Recovering from
damage to systems or regulatory fines can cost millions of dollars.

Here are just three examples of breaches caused by SQL injection:

playlist_add_check_circlek_

playlist_add_check_circlek_

playlist_add_check_circlek_

But it doesn’t have to
end that way for you.

Watch Video

https://www.theregister.com/2016/08/29/fbi_warns_attacks_on_election_systems/
https://www.ibtimes.co.uk/hetzner-hack-top-south-african-web-host-hit-mega-breach-every-client-may-be-exposed-1645658
https://www.twincities.com/2017/10/16/catholic-united-financial-data-breach-may-have-affected-nearly-130k-accounts/
https://www.youtube.com/watch?v=EAN4Mrf5hIs

24

 5 Injection Continued

SQL injection can be defeated by clearly labeling parts of your application, so the computer
knows whether a certain part is data or code to be executed. This can be done using
parameterized queries.

When SQL queries use parameters, the SQL interpreter will use the parameter only as data. It
doesn’t execute it as code.

For example, an attack such as “‘ OR 1=1” will not work. The database will search for the string
“OR 1=1” and not find it in the database. It’ll simply shrug and say, “Sorry, I can’t find that for
you.” An example of a parameterized query in Java looks like this:

Defeat SQL Injection

Most development frameworks provide built-in defenses against SQL injection. Object
Relational Mappers (ORMs), such as Entity Framework in the .NET family, will parameterize
queries by default. This will take care of SQL injection without any effort on your part.

However, you must know how your specific ORM works. For example, Hibernate, a popular
ORM in the Java world, can still be vulnerable to SQL injection if used incorrectly.

https://learn.microsoft.com/en-us/ef/ef6/?redirectedfrom=MSDN
https://hibernate.org/
https://medium.com/@misc_heading/exploiting-a-hql-injection-895f93d06718

25

 5 Injection Continued

Parameterizing queries is the first and best defense, but there are others. Stored procedures
also support SQL parameters and can be used to prevent SQL injection. Keep in mind that the
stored procedures must also be built correctly for this to work.

// This should REALLY be validated too
String custname = request.getParameter(“customerName”);
// perform input validation to detect attacks
String query = “SELECT account_balance FROM user_data
WHERE user_name = ? “;

PreparedStatement pstmt = connection.preparedStatement(
query);
pstmt.setString(1, custname);
ResultSet results = pstmt.executeQuery();

Always validate and sanitize your inputs. Since some characters, such as “OR 1=1” are not going
to be entered by a legitimate user of your application, there’s no need to allow them. You can
display an error message to the user or strip them from your input before processing it.

In saying that, don’t depend on validation and sanitization alone to protect you. Clever
humans have found ways around it. They’re good Defense in Depth (DiD) strategies, but
parameterization is the surefire way to cover all bases.

Another good DiD strategy is using ‘least privilege’ within the database and whitelisting input.
Enforcing least privilege means that your application doesn’t have unlimited power within the
database. If an attacker were to gain access, the damage they can do is limited.

OWASP also has a great SQL Injection
Cheat Sheet available to show how
to handle this vulnerability in several
languages and platforms.

https://learn.microsoft.com/en-us/archive/blogs/brian_swan/do-stored-procedures-protect-against-sql-injection
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

26

 5 Injection Continued

You’ve made some great progress towards understanding SQL injection, and the steps
needed to fix it. Awesome! We’ve discussed how SQL injection occurs; typically with an
attacker using input to control your database queries for their own nefarious purposes.

We’ve also seen the damage caused by the exploitation of SQL injection vulnerabilities:
Accounts can be compromised and millions of dollars lost…a nightmare, and an expensive one
at that. We’ve seen how to prevent SQL injection:

Now, it’s up to you. Practice is the best way to keep learning and building mastery, so why not
check out our Learning Resources on SQL injection? You’ll be well on your way to becoming
a Secure Code Warrior.

The Journey Begins

Parameterizing queries

Using object relational mappers and stored procedures

Validating and whitelisting user input

playlist_add_check_circlek_
playlist_add_check_circlek_

playlist_add_check_circlek_

NOSQL Injection

OS Command Injection

Email Header Injection

XQuery Injection

Discover more types of injection:

https://portal.securecodewarrior.com/#/learning-resources/~2Fapplication_security_weaknesses~2Fweb~2Fdata_handling~2Finjection~2Fsql
https://www.securecodewarrior.com/article/coders-conquer-security-share
https://www.securecodewarrior.com/article/coders-conquer-security-share-learn-series-os-command-injection
https://www.securecodewarrior.com/article/coders-conquer-security-share-learn-series-email-header-injection
http://securecodewarrior.com/blog/coders-conquer-security-share-learn-series-xquery-injection

27

6 Insecure Design

Adding the insecure design category to the OWASP list represents a shift in
how the rankings designate and represent threats and vulnerabilities. Instead
of calling out single vulnerabilities, many of the OWASP top ten entries now
represent broad families of weaknesses. And among them, insecure design is
among the most encompassing.

OWASP explains that insecure design is different from insecure implementation
because insecure design is at the heart of the code. You can have a completely
secure design that introduces vulnerabilities as it is implemented and put into a
production environment. But if the design is insecure to begin with, then even a
perfect implementation won’t do any good. The vulnerabilities will still exist.

They further explain that the biggest factor contributing to the insecure design
category is a lack of business risk profiling of the software or system being
developed, which results in a failure to determine what level of security design is
required. The entire category seems to have been created to help push better
threat modeling and the use of secure reference architectures when creating
code, something that Secure Code Warrior wholeheartedly supports.

Some notable common weakness enumerations (CWEs) cited by OWASP that
are directly created by insecure design include CWE-209: Generation of Error
Message Containing Sensitive Information, CWE-256: Unprotected Storage of
Credentials, CWE-501: Trust Boundary Violation, and CWE-522: Insufficiently
Protected Credentials.

https://owasp.org/Top10/2025/A06_2025-Insecure_Design/

28

 6 Insecure Design Continued

Eliminating insecure design vulnerabilities involves
many of the tactics and techniques that Secure
Code Warrior always advocates on our web pages
and through our video series. Because the new
category is so broad, most efforts to improve
secure coding will have a big impact on removing
this threat from your environment.

There are several key areas to concentrate on that will go a long way to securing code. One
of the most effective is to establish a secure library of code for common tasks like providing
authentication for apps, programs, and APIs. Instead of asking developers to write new code
every time one of those common tasks is required, they should pull from the secure library and
directly add it to their code.

Another important strategy when eliminating insecure design is embracing threat modeling,
which OWASP also highly recommends. A good threat modeling program should focus on
critical areas where vulnerabilities can cause the most damage. This includes authentication
processes, access control, and key flows. The best threat modeling programs are fully
integrated into the development process so that vulnerabilities are found and eliminated as
the code is still being created.

Programs and applications should also be tested for areas that typically bypass threat
modeling. These include things like business logic flaws. For example, you need to know what
happens when a user tries to order billions of items from an eCommerce site, and the app
needs to have specific instructions for handling any strange and unpredictable exceptions.

How to Defeat the Insecure Design Family of Vulnerabilities

Watch Video

29

 6 Insecure Design Continued

Finally, training developers in secure coding techniques and best practices will be critical in
eliminating insecure design from your environment. Developers need to be supported in
their efforts to learn about and deploy secure code. That means offering training to your
developers and also rewarding those who excel at secure coding. It might also mean asking
the best coders to become security champions who support the rest of the team, with
appropriate recognition and rewards for doing so.

The new insecure design category is both encompassing and broad, so there is no one specific
silver bullet that can eliminate it. However, organizations that embrace best practices, better
threat modeling, and security training (plus rewards) for developers will immediately start
to mitigate it. As those efforts start to experience continued success, organizations will find
that the problems of insecure design will naturally wane at the same time. And once you have
established a robust secure coding practice, insecure design vulnerabilities will hardly be a
threat at all.

30

7 Authentication Failures

In this chapter, we will cover one of the most common
problems faced by organizations that either run websites
or which allow employees to remotely access computer
resources - which is pretty much everyone. And yes, you
probably guessed that we are going to be talking about
authentication.

While authentication vulnerabilities are not exploits
themselves, having them as part of a login or user

authorization process makes an attacker’s work easy. If a hacker can simply log
into a system as an administrator with a valid user name and password, then
there is no need to deploy advanced techniques to battle network defenses.
The system simply opens the door and lets the attacker inside. Worse yet,
if the attacker doesn’t do anything too outlandish, their presence is almost
impossible to detect since most defenses will simply see them as a valid user or
administrator doing their job.

The category of authentication vulnerabilities is quite large, but we will go over
the most common problems that tend to get accidentally baked into user login
processes. By shoring up these holes, you can eliminate the vast majority of
authentication problems from your organization.

X X X X X X

In this episode, we will learn:

How some common authentication vulnerabilities are exploited.

Why they are so dangerous.

What policies and techniques can be used to eliminate
authentication vulnerabilities.

double_arrow
double_arrow
double_arrow

31

 7 Authentication Failures Continued

There are quite a few authentication vulnerabilities that might creep into a login or user
authorization system, so hackers exploit each one a little bit differently. First, lets go over the
most common vulnerabilities and then give examples demonstrating how a couple of them
might be exploited.

Having a weak password policy is likely the most common vulnerability. If users are allowed
to create passwords with no restrictions, far too many of them will use easily guessable ones.
Every year various computer news organizations put out a list of the most used passwords,
and “123456” and “password” are always in the top five. There are others. Administrators like
to use “God” quite a lot. True, those are all either humorous or easy to remember, but also
very easy to guess. Hackers know what the most common stupid passwords are, and try
them first when attempting to breach a system. If those kinds of passwords are allowed in
your organization, you will get breached eventually.

The most common authentication vulnerabilities include:

How Do Attackers Exploit Authentication Vulnerabilities?

Having weak or inadequate password policies,

Allowing unlimited login attempts,

Providing information back to an attacker on failed logins,

Sending credentials over insecure channels,

Weakly hashing passwords,

And having an insecure password recovery process.

playlist_add_check_circlek_

playlist_add_check_circlek_

playlist_add_check_circlek_

playlist_add_check_circlek_

playlist_add_check_circlek_

playlist_add_check_circlek_

Watch Video

32

 7 Authentication Failures Continued

A less obvious but still dangerous vulnerability is providing information back to a user
regarding a failed login. This is bad because if you return one message when a user name
does not exist and another when a user name is correct but the password is bad, it allows
attackers to map out valid users on a system and concentrate on guessing passwords. If this
is combined with the authentication vulnerability that allows unlimited password guessing,
it would enable attackers to run dictionary attacks against whatever valid users they have
found, which might get them into a system fairly quickly if the password they are trying to
guess is simply a word or well-known phrase.

There is a classic tale from the American Old West about a paranoid homesteader who
installed triple locks on his front door, boarded up his windows and slept with lots of guns
in easy reach. In the morning he was found dead. His attackers got to him because he
forgot to lock the back door. Authentication vulnerabilities are a lot like that. It really doesn’t
matter what kind of cybersecurity platform you are running or how many expert analysists
you employ if an attacker can simply submit a valid user name and password to enter your
network unopposed.

Once inside, there are very few restrictions on what that attacker can do. So long as they
act within their user permissions, which can be quite extensive if they have compromised an
administrator account, there is very little chance that they will be caught in time to prevent
serious problems. This makes the authentication class of vulnerabilities one of the most
dangerous to have on any system.

Why Are Authentication Vulnerabilities So Dangerous?crisis_alert

One of the best ways to eliminate authentication vulnerabilities from a network is to have
good, globally enforced password policies. Not only should users, even administrators, be
restricted from using passwords like “password” but should be forced to add in a level of
complexity that would make it unfeasible for an attacker to apply a dictionary or common
phrases type of attack.

Eliminating Authentication Vulnerabilities

33

 7 Authentication Failures Continued

You can come up with your own rules for password creation based on the importance of
the system being protected, but a good standard is to force at least three of the following
complexity rules on password creation. Passwords must contain:

Optionally, passwords should also be no more than 128 characters long and not have more
than two identical characters grouped together.

Doing that will prevent attackers from guessing passwords. You should also restrict the
number of failed password attempts so that if an incorrect password is entered more than,
say three times, the user is locked out. The lockout can be temporary as even a few minutes
delay will prevent dictionary attacks from continuing. Or it can be permanent unless the
account is unlocked by an administrator. In either case, security personnel should be alerted
whenever such a lockout occurs so they can monitor the situation.

At least 1 uppercase character (A-Z),

At least 1 lowercase character (a-z),

At least 1 digit (0-9),

At least 1 special character including punctuation marks and spaces,

And be at least 10 characters long.

playlist_add_check_circlek_

playlist_add_check_circlek_

playlist_add_check_circlek_

playlist_add_check_circlek_

playlist_add_check_circlek_

34

 7 Authentication Failures Continued

For more information about authentication
vulnerabilities, you can take a look at the
OWASP authentication cheat sheet.

Another good way to prevent attackers from gathering information is to craft a generic
message whenever either a bad user name or password is entered. It should be the same for
both cases so that hackers wont know if they have been rejected because a user does not
exist or due to having the wrong password.

Authentication vulnerabilities are among the most common and dangerous on most
systems. But they are also fairly easy to find and eliminate.

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html

35

8 Software and Data Integrity Failures

The OWASP Top Ten list has enjoyed a bit of
an overhaul, and now includes categories of
vulnerabilities grouped together into single
listings. This better represents the threat
landscape, and ties many variants of each
vulnerability back to a specific cause.

Watch Video
The Software and Data Integrity Failure
category was likely added to the OWASP list
because of several high-profile breaches that
recently used it in order to compromise otherwise
secure networks.

The vulnerability happens when developers or IT staff make assumptions about the
security related to software updates and other components of programs being used in their
environment. It can occur if, for example, an application calls on or pulls APIs or code snippets
from insecure libraries. It can also happen if software update processes are fully trusted and an
attacker is able to compromise a program or application farther down the supply chain.

Notable Common Weakness Enumerations (CWEs) include CWE-829: Inclusion of
Functionality from Untrusted Control Sphere, CWE-494: Download of Code Without Integrity
Check, and CWE-502: Deserialization of Untrusted Data. But the biggest example of a
software and data integrity failure in action was the so-called SolarWinds attack.

SolarWinds is a company that provides system management tools to help with network
monitoring and other technical services. It was installed at many of the world’s top companies
as well as government organizations and agencies. Attackers were able to compromise
the SolarWinds software update process, installing a back door that was added to every
organization that used SolarWinds when they received their next product update.

What Are Software and Data
Integrity Failures?

https://owasp.org/Top10/2021/
http://youtube.com/watch?si=zyamEC2FGNeQutWP&v=aC-nCEOVdKE&feature=youtu.be
https://owasp.org/Top10/2025/A08_2025-Software_or_Data_Integrity_Failures/
https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach

36

 8 Software and Data Integrity Failures Continued

Because the SolarWinds software update was a trusted process, it was not put under much
scrutiny at the 18,000 organizations that deployed it. Once the back door was installed,
hackers were able to pick and choose which organizations they wanted to infiltrate. About 100
were ultimately compromised, including some otherwise highly secure government agencies.
The attack was so subtle that it went unnoticed for months. And when it was revealed, the
scope of the compromise was front-page news around the world. So we are certainly talking
about a very dangerous vulnerability.

Making sure that this new vulnerability does not affect your
organization requires a few extra steps beyond what is required
when combatting others on the OWASP list. Of course, you want
to maintain the best practices that Secure Code Warrior always
advocates via our content and video series. But once you have secure
code in place, or if you are using software or applications from other
vendors, you need to also take steps to secure your supply chain.

First off, you should only accept updates that are digitally signed so
that you can ensure that they are coming from the vendor themselves
and not a third party who compromised the update channel. That
would not have helped in the SolarWinds incident because the vendor
itself was compromised and sending out the malicious code.

To fully protect your organization, you should add a software supply
chain security tool. These tools specifically look at update data
and scan it for vulnerabilities. There are many to choose from, and
OWASP offers two including the OWASP Dependency Check and
the OWASP CycloneDX. But whatever tool is used, it’s absolutely
critical that all software update processes are scrutinized and checked
for vulnerabilities. Even if the program being patched is trusted, you
should never trust an update process, and always scrutinize it.

How to Defeat the Software and Data
Integrity Failures Family of Vulnerabilities

37

Beyond just checking update processes using tools, you should also implement a review
process for all code and configuration changes to minimize the chance that malicious code
or configurations can be snuck into your software pipeline. For extra security, the entire CI/
CD pipeline should be segregated to ensure that no untested code slips into your production
environment.

SolarWinds showed the danger of software and data integrity failures. It also forced
organizations to look at their software update processes as a possible avenue of attack. But
now that we know about it, steps can be put in place to close this overlooked loophole in many
organizations’ cybersecurity defenses. This new vulnerability certainly deserves a spot on the
OWASP list, but now that we are fully versed about the dangers, it’s a vulnerability that can be
mitigated and ultimately defeated.

8 Software and Data Integrity Failures Continued

38

9 Logging and Alert Failures

Logging & Alerting Failures are among the
most dangerous conditions that can exist
within a network defensive structure. If
vulnerabilities or conditions in this category
are present, then almost any advanced
attack made against it will eventually be
successful. Having insufficient logging and
monitoring means that attacks or attempted
attacks are not discovered for a very long
time, if at all. It basically gives attackers the
time they need to find a useful vulnerability
and exploit it.

OWASP’s comprehensive logging cheat
sheet delivers an extensive overview of
the category-wide basics, and below, we
will step through the core concepts.

We will learn:

How attackers can use insufficient logging and monitoring.

Why insufficient logging and monitoring is dangerous.

Techniques that can fix this vulnerability.

double_arrow	
double_arrow
double_arrow

!

https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html

39

 9 Logging and Alert Failures Continued

At first, attackers don’t know if a system is being properly monitored, or if log files are being
examined for suspicious activity. But it’s easy enough for them to find out. What they will
sometimes do is launch some form of inelegant, brute force type of attack, perhaps querying
a user database for commonly used passwords. Then they wait a few days and try the same
kind of attack again. If they are not blocked from doing it the second time, then it’s a good
indication that nobody is carefully monitoring the log files for suspicious activity.

Even though it’s relatively simple to test a network’s defenses and gauge the level of active
monitoring happening, it’s not a requirement of successful attacks. In fact, hackers don’t need
to do anything to actively exploit the situation caused by insufficient logging and monitoring.
They can simply launch their attacks in such a way as to make as little noise as possible. More
often than not, the combination of too many alerts, alert fatigue, poor security configurations
or simply a plethora of exploitable vulnerabilities means that they will have plenty of time to
complete their goals before defenders even realize that they are there.

How Do Attackers Exploit Security
Logging and Alerting Failures?

Insufficient logging, monitoring and alerting is dangerous because it gives attackers time to
not only launch their attacks, but to complete their goals long before defenders can launch
a response. How much time depends on the attacked network, but different groups like
the Open Web Application Security Project (OWASP) put the average response time for
breached networks at 191 days or longer.

Why Are Authentication Vulnerabilities So Dangerous?crisis_alert

Watch Video

40

Think about that for a moment. What would happen if robbers held up a bank, people called
the police, and it took them half a year to respond? The robbers would be long gone by the
time police arrived. In fact, that same bank can be robbed many more times before the police
even respond to the first incident.

It’s like that in cybersecurity too. Most of the high-profile breaches that you hear about on
the news were not smash and grab type of operations. Often times the targeted organization
only learns about a breach after the attackers have had more or less full control over data
for months or even years. This makes insufficient logging and monitoring one of the most
dangerous situations that can happen when trying to practice good cybersecurity.

Preventing insufficient logging and monitoring requires two main things. First, all applications
must be created with the ability to monitor and log server-side input validation failures with
enough user context for security teams to identify the tools and techniques, if not the user
accounts, that attackers are using. Or, such input should be formatted into a language like STIX
(Structured Threat Information eXpression) which can be quickly processed by security tools
to generate appropriate alerts.

Secondly, it’s not enough to simply generate good alerts, though that is a start. Organizations
also need to establish roles and responsibilities so that those alerts are investigated in a timely
fashion. Many successful breaches actually triggered alerts on the attacked networks, but
those warning were not heeded because of questions of responsibility. Nobody knew whose
job it was to respond, or assumed that someone else was looking into the problem.

Eliminating Logging and Alerting Failures

9 Logging and Alert Failures Continued

41

 9 Logging and Alert Failures Continued

A good place to start when assigning responsibilities is adopting an incident response
and recovery plan like the one recommended by the National Institute of Standards and
Technology (NIST) in special publication 800-61. There are other reference documents,
including ones specific to various industries, and they don’t have to be followed to the letter.
But forming a plan defining who within an organization responds to alerts, and how they go
about doing that in a timely fashion, is critical.

For further reading, you can take
a look at what OWASP says about
logging and alerting failures.

https://csrc.nist.gov/pubs/sp/800/61/r2/final
https://owasp.org/Top10/2025/A09_2025-Security_Logging_and_Alerting_Failures/

42

10 Mishandling of Exceptional Conditions

With OWASP’s release of its 2025 Top Ten, enterprises have a couple of new
risk categories to pay special attention to, including a brand-new category that
proves, once and for all, that what you don’t know can indeed hurt you.

The new category, Mishandling of Exceptional Conditions, outlines what can
go wrong when organizations aren’t prepared to prevent, detect and respond to
unusual or unpredictable situations. According to OWASP, this vulnerability can
trigger when an application doesn’t prevent something unusual from occurring,
fails to identify a problem when it crops up and/or responds poorly or not at all
when an unexpected situation rears its head.

The idea that enterprises need to be ready for what they didn’t see coming
reflects the reality of today’s highly distributed, interconnected systems. And it’s
not like OWASP is talking about problems that are unheard of—the Mishandling
of Exceptional Circumstances contains 24 Common Weakness Enumerations
(CWEs). It’s just that those CWEs, which involve improper error handling, failure
to open events, logical errors and other scenarios, can occur under abnormal
conditions. This can result, for instance, from inadequate input validation, high-
level errors in handling functions and the inconsistent (or non-existent) handling
of exceptions. As OWASP states, “Any time an application is unsure of its next
instruction, an exceptional condition has been mishandled.”

Those exceptional circumstances can cause systems to fall into an unpredictable
state, resulting in system crashes, unexpected behavior and long-lasting security
vulnerabilities. The key to preventing this kind of disruption is to, essentially,
expect the worst and plan to be prepared for whenever the unexpected
happens.

()

https://owasp.org/Top10/2025/0x00_2025-Introduction/
https://owasp.org/Top10/2025/A10_2025-Mishandling_of_Exceptional_Conditions/
https://cwe.mitre.org/

43

 10 Mishandling of Exceptional Conditions Continued

The makeup of the quadrennial Top Ten list of the most serious risks to web application
security has been fairly stable through the years, with some categories moving around the
list and maybe one or two additions every four years. The 2025 iteration has two new entries,
including Mishandling of Exceptional Conditions coming in at No. 10. The other, Software
Supply Chain Failures, which sits at No. 3, is an expansion of an earlier category, Vulnerable
and Outdated Components (No. 6 in 2021), that now includes a broad range software
compromises. (For those keeping score, Broken Access Control still rules the roost as the
No. 1 risk).

The exceptional conditions that constitute the newest category can create a host of
vulnerabilities, from logic bugs to overflows, and fraudulent transactions to issues with
memory, timing, authentication, authorization and other factors. These types of vulnerabilities
can impact the confidentiality, availability and integrity of a system or its data. They allow
an attacker to manipulate an application's flawed error handling, for example, to exploit the
vulnerability, OWASP said.

One example of failing to handle unexpected conditions is when an application identifies
exceptions while files are being uploaded during a denial-of-service attack, but then fails to
release resources afterward. When that happens, resources remain locked or unavailable,
resulting in resource exhaustion. If an attacker intrudes on a multi-step financial transaction, a
system that doesn’t roll back the transaction once an error is detected could allow the attacker
to drain the user’s account. If an error is detected part of the way through a transaction, it’s
very important to “fail closed”—that is, roll back the entire transaction and start over. Trying to
recover a transaction in midstream can create unrecoverable mistakes.

Exceptional Circumstances and the Evolution of the Top Ten

Watch Video

https://owasp.org/Top10/2025/A03_2025-Software_Supply_Chain_Failures/
https://owasp.org/Top10/2025/A03_2025-Software_Supply_Chain_Failures/
https://owasp.org/Top10/2021/A06_2021-Vulnerable_and_Outdated_Components/index.html
https://owasp.org/Top10/2021/A06_2021-Vulnerable_and_Outdated_Components/index.html
https://owasp.org/Top10/2025/A01_2025-Broken_Access_Control/

44

 10 Mishandling of Exceptional Conditions Continued

So, what’s the difference between these two actions? Let’s clarify:

Fail Open: If a system “fails open,” it continues to operate, or remains “open” when something
goes wrong. This is useful when keeping things running is very important, but it can be risky for
security.

Fail Closed: If a system “fails closed,” it automatically shuts down or becomes secure
when there’s a problem. This is safer from a security perspective because it helps prevent
unauthorized access.

Preventing this kind of risk starts with planning for the unknown. And that involves being able
to detect any possible system error when it occurs and taking steps to solve the problem.
You need to be able to properly inform the user (without revealing critical information to the
attacker), log the event and, if necessary, issue an alert.

Here’s an example of the disclosure of a SQL query error, along with the site installation path,
that can be used to identify an injection point:

A system ideally would have a global exception handler in place to catch overlooked errors,
along with features such as monitoring or observability tooling, or a feature that detects
repeated errors or patterns that could flag an ongoing attack. This can help defend against
attacks that are intended to take advantage of any weaknesses the enterprise may have in
handling errors.

For a standard Java web application, for instance, a global error handler can be configured
at the web.xml deployment descriptor level—in this case, a configuration used from Servlet
specification version 2.5 and above.

Fail Closed vs. Fail Open

Handling Unforeseen Errors

Warning: odbc_fetch_array() expects parameter /1 to be resource,
boolean given in D:\app\index_new.php on line 188

45

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"

ns="http://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

version="3.0">
...
 <error-page>
 <exception-type>java.lang.Exception</exception-type>
 <location>/error.jsp</location>
 </error-page>
...
</web-app>

10 Mishandling of Exceptional Conditions Continued

This little block of code tells a Java web
application what to do when something goes
wrong behind the scenes. Instead of showing
users a confusing error message or a blank
screen, it quietly catches the problem and
sends them to a custom error page. In this case,
that page would be error.jsp.

Because it’s set to handle the general java.
lang.Exception types, it acts as a master error
handler for the whole app. That means no
matter where an error happens, users will be
redirected to the same friendly, consistent error
page instead of seeing raw technical details.

%@#&$

? ? ? ? ?

X-X-X-X

46

 10 Mishandling of Exceptional Conditions Continued

Ideally, organizations should work to prevent—as much as possible—exceptional conditions
from even occurring. Implementing rate limiting, resource quotas, throttling and other
limits can help against denial-of-service and brute force attacks, for example. You may
want to identify identical repeated errors and include them only as statistics, so they don’t
interfere with automated logging and monitoring. A system should also include:

Strict input validation, to ensure that only properly formed and sanitized data is
entering the workflow. It should be early in the data flow, ideally as soon as any data is
received.

Error handling best practices, to catch errors right where they happen. They should be
dealt with efficiently: Tell users clearly that they must keep a log and send alerts if needed.
A global error handler is also ideal to catch anything that was missed.

General transaction safety, is also a must. Always “fail closed”: if something goes
wrong, roll back the entire transaction. And don’t try to fix a transaction halfway—it can
cause bigger problems.

Centralized logging, monitoring and alerting, along with a global exception handler,
which allows for quick investigation of incidents and a uniform process of handling events,
while also making it easier to meet compliance requirements.

Threat modeling and/or secure design review, performed in the design phase of
projects.

Code review or static analysis, as well as stress, performance and penetration testing
performed on the final system.

Mishandling of Exceptional Conditions may be a new category, but it involves some basic
principles of cybersecurity and emphasizes why enterprises need to be prepared for what
they aren’t necessarily anticipating. You may not know what form exceptional conditions
will take, but you know they will happen. The key is in being prepared to handle all of them
in the same way, which will make it easier to detect and respond to those conditions when
the inevitable crops up.

Preventing the Unexpected

securecodewarrior.com

For more information on navigating common vulnerabilities,
check out our free Secure Code Coach.

Want more traceability and observability of the AI tech stack
being used by your developers? Don’t miss SCW Trust
Agent: AI.

Want to see how Secure Code Warrior can help transform the
security culture of your organization, and turn your developers
into the heroes we need to fight the complex threat
landscape? Book a demo.

Links and Resources

Your security foundation should start with the OWASP Top 10
2025, and we’ve got interactive, hands-on, and job-relevant
Quests and so much more to really boost developer-led
security awareness and action. And that’s just the beginning.

Explore the next level of security-skilled software
development with Secure Code Warrior.

What's Next?

As we update our Learning Platform content to align with the OWASP Top 10 2025
standard, you may observe minor adjustments in the Trust Score for your Full Stack
developers. Please reach out to your Customer Success representative if you have
any questions or require support.

Note to SCW Trust Score™ Users: note_add

>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>

https://www.securecodewarrior.com/coach
https://www.securecodewarrior.com/product/trust-agent-ai
https://www.securecodewarrior.com/product/trust-agent-ai
https://www.securecodewarrior.com/request-a-demo
https://www.securecodewarrior.com/assigned-learning/quests
https://www.securecodewarrior.com/

