
Solving the SQL
Tuning Problem
Secrets of Quest® SQL Optimizer

INTRODUCTION

For years, commercial database manufacturers have fought an
endless battle to improve the performance of inserting, updating,
deleting and retrieving information stored in the database.
Despite their ongoing efforts and hard work, we have not seen
a significant improvement in the performance of most relational
database management systems (RDBMS): users still suffer from
under-performing SQL statements, and database experts are still
spending countless hours tuning SQL statements.

Quest SQL Optimizer provides a solution for improving SQL
statement performance that an internal database management
system’s SQL optimizer cannot provide. This paper explains how.

THE CHALLENGES WITH INTERNAL DATABASE
SQL OPTIMIZERS

Major deficiencies cause the database’s internal SQL optimizer
to fail to find a good execution plan for a SQL statement. Two
of these deficiencies include inaccurate database statistics and
SQL cost estimation of the resources that may be used for the
SQL statement.

Statistics and index statistics may not be up to date.

Batch mode statistics collection and a near real-time data
sampling technique are two common methods to collect
database statistics. The batch mode statistics collection method
processes a large set of data and uses system resources. This

2

takes time to collect the data statistics.
Consequently, these collections are
normally executed during non-peak
hours, when the systems administrator
determines the statistics to update. If
many INSERT or DELETE operations
have occurred since the last collection
of statistics, then these statistics will not
reflect the most up-to-date information
when a SQL statement is executed. This
may cause the database SQL optimizer to
generate a poorly performing execution
plan for the current data distribution.

Fortunately, in the last few years,
database vendors have improved
the collection of statistics with a new
real-time data sampling technique. This
allows small amounts of data to be
sampled for the statistics collection.
This requires the data to be equally
distributed so the sampling data can fully
reflect the true data distribution. The
batch mode statistics collection method
is the alternative to generate accurate
statistics for the database if the data is
not equally distributed.

Cost estimation may not be accurate.

The second deficiency that causes the
database SQL optimizer to select a poor
execution plan is having inaccurate cost
estimations. It is obvious that incorrect
statistics will result in inaccurate cost
estimation for a SQL statement. Even if
the database statistics are accurate, the
database SQL optimizer cannot correctly

determine the best execution plan since it
does not have all the pertinent information.
Let’s examine the following SQL:

In this SQL statement, three tables are
joined. We assume the database SQL
optimizer will use a nested loop join only
when all of the statistics are available
for the tables and indexes used in this
SQL statement. In this example, we find
from reviewing the data that the driving
path from table C→B→A (Figure 1) takes
more time than that of the driving path
A→B→C (Figure 2). But most of database
SQL optimizers will pick up the driving
path C→B→A. This happens because C.f2
has a unique index and the database
SQL optimizer does not know which
values will be returned from C.key2.
As you can see from this example, the
data itself is determining the number of
records retrieved and the cost to process
the execution plan. The database SQL
optimizer does not have this information,
and therefore it cannot choose the best
execution plan.

Even if the database
statistics are accurate,
the database SQL
optimizer cannot
correctly determine
the best execution
plan since it does not
have all the pertinent
information.

Figure 1. The driving path starts from table C to table B, which matches four rows from
table B. Then those four rows are matched to the rows in table A. The rows highlighted
in gray in table B show the two records that caused extra scan operations using this
driving path.

SELECT *
FROM A, B, C
WHERE A.key1 = B.key1
AND B.key2 = C.key2
AND C.f2 = 0
AND A.f1 = 0

Table A

A.f1 A.key1

0 a1

0 a2

1 b1

1 b2

2 c1

2 c2

Table C

C.key2 C.f2

a 0

b 1

c 2

d 3

e 4

f 5

Table B

B.key1 B.key2

a1 a

a2 a

a3 a

a4 a

b1 b

b2 b

C.f2 = 0

3

THE CHALLENGE OF DESIGNING
AN INTERNAL SQL REWRITE
FUNCTION

Today, the internal SQL optimizer in most
database management systems has a
limited built-in SQL rewrite ability (see
Figure 3). The internal rewrite is used
to correct some obvious programming
mistakes or to rewrite the input SQL to
an internal SQL syntax. This internal
SQL syntax will make the later stage of
optimization easier for transforming an IN
or EXISTS sub-query to a JOIN statement
or making use of materialized views.
Some databases have a weak internal
SQL rewrite ability, which leaves room for
database tuning experts to influence the
database SQL optimizer to make a better
choice in the later stage of the execution
plan generation. Of all the databases,
Oracle has the most open architecture
to accept the user’s influence through
use of optimization “hints.” Oracle is also
the most syntax sensitive database that
allows users to tune their SQL statements
by restructuring the SQL syntax.

In contrast, a database like IBM DB2
UDB (Universal Database) has a very
strong internal SQL rewrite ability. In IBM
DB2 UDB, most SQL statements can be
transformed into their internal SQL syntax
before they are further optimized. This
appears to be good news that would
make it unnecessary for programmers
to tune their SQL statements, since the
database SQL optimizer would be doing
the job for them. But the problem with
this approach is that when the database
SQL optimizer makes a mistake on a
specific SQL statement, it is hard for the
programmer to influence the database
SQL optimizer to pick up other choices.

This illustrates the dilemma that database
engineers always face: Do they make the
database smart, so it makes intelligent
choices for the user? Or do they give
the user the control, since the database
SQL optimizer will not always make an
intelligent choice?

Internal query rewrite

Generate execution plan

Estimate plan cost

Database query optimizer

Pick up the best plan
with the lowest cost
for execution

SQL Execution

Figure 3. Database SQL optimizer processing steps

Should database
engineers make the
database smart, so
it makes intelligent
choices for the user?
Or do they give the
user the control,
since the database
SQL optimizer will
not always make an
intelligent choice?

Figure 2. The driving path starts from table A to table B, which matches two rows. Then
those two rows are used to match to the rows in table C. So with this driving path, no
unnecessary table scans are performed. Though starting with a condition of lower
selectivity, the overall scan operations are more optimistic.

Table A

A.f1 A.key1

0 a1

0 a2

1 b1

1 b2

2 c1

2 c2

Table C

C.key2 C.f2

a 0

b 1

c 2

d 3

e 4

f 5

Table B

B.key1 B.key2

a1 a

a2 a

a3 a

a4 a

b1 b

b2 b

A.f2 = 0

4

HOW QUEST SQL OPTIMIZER
SOLVES THE SQL PROBLEM

Quest SQL Optimizer mimics human
SQL rewriting skills.

Quest SQL Optimizer is an external SQL
rewriter that mimics human expertise
to rewrite SQL statements to help
the database's internal SQL optimizer
make better decisions. A human expert
may know more about the data in the
database and its distribution. A database
programmer with a good comprehension
of SQL and its execution can rewrite
a SQL statement to guide the internal
database SQL optimizer to make a better
choice among all its internally generated
execution plans. Since the number of

execution plans generated by the internal
database SQL optimizer is limited by
the syntax of the SQL statement, an
experienced database tuner can rewrite
the SQL syntax to force the internal
database SQL optimizer to pick up a
better execution plan.

Figure 4 shows how Quest SQL
Optimizer mimics human SQL rewriting
skills. Of course, a software program
cannot know how to rewrite a SQL
statement to the best syntax for a
particular database environment, but
Quest SQL Optimizer has the capability
to try every possible rewrite (within the
quota limits that you determine) and
thereby find the best solution.

Recursive SQL
transformation

Data dictionary

Generate execution plan

Eliminate duplicate
execution plans

Cost elimination or
physical test run

Problematic SQL

Rewritten SQL Pick up the best SQL
and paste back to
program source

Identify problematic
SQL from
program source

External SQL
rewriter

Plan APlan E Plan CPlan GPlan I Plan BPlan F Plan DPlan HPlan J

Best plan
for SQL1

Best plan
for SQL2

Best plan for
SQL3 & SQL5

Best plan
for SQL4

SQL5 SQL4 SQL3 SQL2 SQL1

Figure 4. Quest SQL Optimizer is an external SQL rewriter that mimics human expertise
to rewrite SQL statements to help the database's internal SQL optimizer make
better decisions.

Figure 5. Relationships with SQL syntax changes and the execution plan generation

Quest SQL Optimizer
mimics human
expertise to rewrite
SQL statements to
help the database's
internal SQL optimizer
make better decisions.

5

CHANGING SQL SYNTAX TO
IMPROVE SQL PERFORMANCE

Limitations of internal SQL
rewrite functionality

Due to limitations in the database's
internal SQL rewrite capability, it cannot
transform a SQL statement into very many
semantically equivalent SQL alternatives.
Therefore, it is not possible for it to
generate every possible way to rewrite
a SQL statement. For example, assume
that five SQL statements from SQL 1 to
SQL 5 are semantically equivalent but
syntactically different. The database
SQL optimizer may generate a different
set of execution plans accordingly (see
Figure 5). For each set of execution plans
(SQL 1 has Plan A, B, C), the database SQL
optimizer will carry out a cost estimation
and will execute the execution plan
with the lowest cost. If the database
SQL optimizer fails to select a good
execution plan due to an inaccurate cost
estimation or because it is limited by the
number of execution plans generated,
the corresponding SQL statement’s
performance will be degraded.

In order to rectify this situation, a
programmer can rewrite the original SQL
multiple times. For each rewritten SQL,
the database SQL optimizer creates a
set of execution plans. Based on this
new set of execution plans, the database
SQL optimizer may select to use an
execution plan that was not found in

the original set of plans. If one of the
execution plans from those rewritten SQL
has better performance, the programmer
can use the new syntax to replace the
original SQL in the source to improve
the SQL performance without changing
the results. This is what we call SQL
tuning without creating new indexes or
database configuration changes.

SQL tuning experts may find that some
rules of SQL syntax restructuring improve
SQL statements in certain environments.
For example, a nested loop join
accessing a small table first and using an
index search on a large table is normally
better than joining the data from the large
table to the small table. But for complex
SQL statements with many table joins,
a general rule like that may be hard to
apply. This is especially true in situations
with many join operations, where sorting
and filtering methods are combined into
one long and complex execution plan.

Quest SQL Optimizer’s Recursive SQL
Transformation Engine

The Recursive SQL Transformation
technology used in Quest SQL Optimizer
simulates human SQL transformation
techniques. It incorporates a set of
transformation rules to transform SQL
statements on a section-by-section basis.
This replaces the trial-and-error method
used by a person to rewrite the syntax of
a SQL statement.

The database's
internal SQL rewrite
capability cannot
transform a SQL
statement into very
many semantically
equivalent SQL
alternatives.

6

Each transformation rule in the
optimization engine is independent from
one another, like a capsule; the rule’s
‘capsule’ can be opened only when all
necessary conditions are satisfied (see
Figure 6). This guarantees the semantic
equivalence of the rewritten SQL
statements so they produce the same

results as the original SQL. When a SQL
statement is transformed by one rule
to produce a new SQL syntax, the new
syntax may now satisfy the requirements
of another rule; hence, transformation
is carried out in a recursive manner
(see Figure 7).

The Recursive SQL
Transformation Engine
replaces the trial-
and-error method
used by a person to
rewrite the syntax of a
SQL statement.

Protector

Protector

Protector

Protector

Protector

Transform

Transform

Transform

Transform

Transform

Feedback queue & selector

SQL

Rules

Output transformed SQL

Figure 6. With Quest SQL Optimizer’s Recursive Transformation Engine, each
transformation rule in the optimization engine is independent from one another, like
a capsule; the rule’s ‘capsule’ can be opened only when all necessary conditions
are satisfied.

SQL1

SQL11

SQL111 SQLnn1

SQLn1

SQL2

SQL12

SQL112 SQLnn2

SQLn2

SQL3

SQL13

SQL113 SQLnn3

SQLn3

… SQLn

… SQL1n

… SQL11n … SQLnnn

SQL

Figure 7. Chain effect of SQL transformation: when a SQL statement is transformed
by one rule to produce a new SQL syntax, the new syntax may now satisfy the
requirements of another rule; hence, transformation is carried out in a recursive manner.

7

Example

Let’s take a look at the following SQL
statement and use two of the built-in
transformation rules used by Quest
SQL Optimizer to see how this recursive
transformation works. We will use one
rule to transform the IN condition to an
EXISTS condition and then use another
rule that does the reverse, changing
the EXISTS condition to an IN condition.
We will illustrate this with the following
SQL statement.

The first two levels of transformation are
shown in the left side of Figure 8. SQL
statements with syntax different from the
original can be produced by following
a set of transformation rules. You can
see that for each rule applied to the

SQL statement, the newly transformed
SQL will satisfy another rule. The order
in which the rules are processed can
result in different SQL alternatives. In
this example, the source SQL has
gone through two transformation rules
executed in a recursive manner. If we do
not stop the recursive transformation, the
loop will continue indefinitely.

A total of four unique SQL statements
(marked by the solid boxes in Figure 8)
are generated by the two transformation
rules. If each of these SQL statements
ends up with a new execution plan, we
potentially have three SQL statements
that may give us different performance to
be used as a benchmark to the original
SQL statement.

SQL statements
with syntax different
from the original
can be produced
by following a set of
transformation rules.

IN to EXISTS

EXISTS to IN

EXISTS to IN

IN to EXISTS

Figure 8. A SQL statement being transformed by two recursive transformation rules

SELECT *
	 FROM A
		 WHERE A.C1 IN (SELECT B.C1
			 FROM B
				 WHERE EXISTS (SELECT ‘x’
					 FROM C
						 WHERE B.C2 = C.C2))

8

The sole purpose
for transforming
the syntax of a SQL
statement is to find a
new syntax that can
potentially influence
the database SQL
optimizer to pick up a
better execution plan.

Implementing a transformation rule
requires a more complicated control
than is shown in this illustration. For
example, Quest SQL Optimizer has to
check whether a set operator (UNION,
MINUS or INTERSECT) is in a sub-query,
whether multiple items are in the SELECT
list, and much more. If these rules are self-
protected, it means the transformation and
conditional checking are encapsulated
into a one-rule capsule to prevent
generating incorrect SQL statements (SQL
statements that do not produce the same
result as the original SQL).

Quest SQL Optimizer’s Recursive
Transformation Engine has a multitude
of transformation rules that can handle
very complicated situations. The result
of the recursive transformation for a
complex SQL statement may sometimes
exceed what you can imagine. For
example, some transformation rules
can be applied endlessly to transform a
SQL statement to another semantically
equivalent statement without limitation,
so quotas must be used to control the
number of SQL alternatives generated
and available in Quest SQL Optimizer.

SQL transformation rules provide
semantic equivalence.

Since a computer cannot understand
the relationship and meaning of data
stored in a database, a software program
cannot transform a logically clumsy SQL
statement into a logically simple one. For
example, the following SQL statement

joins three tables to select the A* records.
If a programmer tells you that table B is
not necessary, the SQL can be rewritten
into a SQL statement that eliminates table
B and joins only tables A and C.

If we review the syntax of the two SQL
statements in Figure 9, we cannot
determine that the two SQL statements
are semantically equivalent. However, a
programmer who understands the data
can simplify the logic from a three-table
join into a SQL statement with a two-
table join.

Quest SQL Optimizer uses
transformation rules to transform SQL
statements to other syntax that is
semantically equivalent to the original
SQL statement—that is, where the SQL
alternative produces the same result as
the original SQL statement. The sole
purpose for transforming the syntax
of a SQL statement is to find a new
syntax that can potentially influence the
database SQL optimizer to pick up a
better execution plan.

Example: Quest SQL Optimizer’s
transformation rules for correcting
common errors

What are some examples of SQL
transformation rules that are used in
Quest SQL Optimizer? The common error
rules are used to correct common, but
inefficient, practices that programmers
may use when creating SQL statements.
Figure 10 shows two examples.

Figure 9. If a programmer tells you that table B is not necessary, the SQL on the left can
be rewritten into a SQL statement that eliminates table B and joins only tables A and C.

9

When there are many
table operations in
a SQL statement,
there is no way for
the database SQL
optimizer to evaluate
all possible paths for
joining the tables.

For Example 1 in Figure 10, the operation,
+10, was applied to the emp_id column.
This causes a full table scan since 10
must be added to the emp_id value for
each row of the table. By transforming
the syntax to subtract 10 from the other
side of the operation, it makes it possible
for an index to be used.

For Example 2 in Figure 10, Quest SQL
Optimizer will check the emp_id to
determine if the column was defined as
NOT NULL. If it is a NOT NULL field, the
NVL function can be eliminated. This
transformation may also eliminate a full
table scan by making it possible for an
index to be used.

JOIN PATHS

Why evaluating join paths
is complicated

The join path is the order in which the
data is retrieved from two or more tables.
Theoretically, the database SQL optimizer
should find the best path to join two or
more tables for a given SQL statement.
The problem is that when there are many
table operations in a SQL statement,
there is no way for the database SQL
optimizer to evaluate all possible paths
for joining the tables, given the limited
amount of time it has to select an
execution plan. Let’s take a look at the
following SQL statement. It involves
joining eight tables, and each table has a
relationship with the seven other tables.
If we consider only the Nested Loop
join, the total permutation is 8!= 40,320
possibilities. So, you can see it would
take a long time for the database SQL
optimizer to evaluate all possible paths.

I have seen a SQL statement (in an
electric power company’s application)
that involved more than a 13-table
join. If you calculate all possible join
paths, the permutation would be 13!=
6,227,020,800. This would almost
require a supercomputer to do an
optimization before the execution of
the SQL statement. Consequently, the
database SQL optimizer does a rough
estimation and runs the SQL immediately,
which is much faster than trying to do a
comprehensive analysis to find the very
best table join path before beginning
the execution.

Why join paths matter

The basic nested loop join operation
is supported by most RDBMS since it
requires less memory and temporary
space. Normally, it provides faster data
response time than other join operations.
However, the path of a nested loop join
will significantly affect the speed of the
join operation. Let’s use a two-table
join as an example to understand how
this works:

select * from
T1,T2,T3,T4,T5,T6,T7,T8
where T1.key=T2.key
and T2.key=T3.key
and T3.key=T4.key
and T4.key=T5.key
and T5.key=T6.key
and T6.key=T7.key
and T7.key=T8.key

Transform

Example 1

Transform

Example 2

Figure 10. Quest SQL Optimizer includes rules to correct common but inefficient
practices in writing SQL.

10

Quest SQL Optimizer
is not attempting
to directly find the
best alternative
SQL rewrite.

If we focus on the Nested Loop join
operation and assume these two tables
are cached in memory, we can calculate
the number of operations to retrieve both
tables for the two possible join paths:

The path from table A to table B means
that we open table A, looking at each
row to then use an index to search for
matching rows in table B:

Number of operations (A→B) = 100,000 *
RoundUp(LN(1000) / LN(2)) / 2 = 100,000 *
10 / 2 = 500,000

Where LN(1000)/LN(2) is the height of the
B-tree for index of B.key, half the height
is assumed as an average searching
depth for a specific record from B.key.

The path from table B to table A means
that we open B table, looking at each
row to then use an index to search for
matching rows in table A:

Number of operations (B→A) = 1000 *
RoundUp(LN(100,000) / LN(2)) / 2 = 1000 *
17 / 2 = 8,500

Where LN(100,000)/LN(2) is the height
of the B-tree for index of A.key, half
the height is assumed as an average
searching depth for a specific record
from A.key.

According to the calculation, you will
find that the path from B→A is around
500,000/8,500, or ~59 times faster
than the speed of A→B. This explains
why some SQL statements with a wrong
driving path can be tuned up to hundreds
of times faster.

Many programmers may have learned
from experience to use the small table
to drive a bigger table for a nested loop
join produces faster results. When a
SQL statement is simple and natural, it
is likely a programmer will write the SQL
statement using the best driving path.

But in a real live application, the SQL
statements can be far more complicated
than a simple two-table join operation.
For example, the key for both tables
may not be unique. There may be some
filtering criteria for both tables that make
it so no histogram can be referenced.
This makes it so that the database SQL
optimizer cannot accurately estimate the
cost of each join path. Human expertise
is needed to solve the problem when the
database SQL optimizer chooses a poor
execution plan.

For other join methods, such as hash
join or sort merge, the join path may not
significantly affect the SQL speed for a
two-table join. But in some situations, like
those illustrated in Figure 1 and Figure 2,
you may find that the join path still plays
a major role in the performance of a
SQL statement.

How to control the join path

The design concept used in Quest
SQL Optimizer to apply recursive SQL
transformation rules is different from
common SQL tuning tools or human
SQL tuning knowledge. Quest SQL
Optimizer is not attempting to directly
find the best alternative SQL rewrite like
a human expert would. Quite frankly,
no human knowledge can address all
possible combinations of SQL syntax,
hardware configurations and software
configurations—or predict the behavior
of the database SQL optimizer—to
immediately know what the best SQL
syntax is for a given SQL statement.

To control a join path, we cannot tell the
internal database SQL optimizer which
path is the best one to select. Instead,
we add something to the syntax of the
SQL statement that causes an increase to
the cost of the current join path selected
by the internal database SQL optimizer.

select * from A,B	� Let’s assume that A.key and B.key are
unique B-Tree indexed

 where A.key = B.key	 (assume B-tree has two nodes for each parent)
	 A table has 100,000 records
	 B table has 1000 records

11

The rewriting of the
SQL syntax is the
only tool that can be
used to influence
the database SQL
optimizer to pick the
right path.

Example: a two-table join

Let’s take a look at an example of a two-
table join scenario, shown in Figure 11.

If we consider the nested loop join,
two paths can be considered by the
database SQL optimizer, which are
A→B and B→A. After the cost estimation,
the database SQL optimizer may think
that B→A has the lower cost, so, the
database SQL optimizer will select the
join path of B→A. If we know that the
join path selected by the database
SQL optimizer is not the optimal path,
we should be given an opportunity to
influence the database SQL optimizer to
select another path. For some databases,
like Oracle, if you know which path is the
best, you can use the optimization hints
to influence the database SQL optimizer
to pick the right path. In some databases,
such as IBM DB2 UDB, there are no
execution plan hints available. Therefore,
the rewriting of the SQL syntax is the
only tool that can be used to influence
the database SQL optimizer to pick the
right path.

Let us rewrite the following SQL syntax
and assume that the datatype for A.key
and B.key is numeric.

In Oracle and Sybase Adaptive Server,
the index search of A.key on table A
is disabled by changing the syntax to
A.key + 0. The addition of +0 does not
affect the value of A.key, but it does
cause a full table scan on A table. The
cost estimation of the join “from table B
to index search table A” will be artificially
increased by this new syntax. If the new
cost is higher than the path of A→B, the
database SQL optimizer will pick up the
execution plan of “from table A to index
search table B.”

In a real-life situation, the database SQL
optimizer may not actually select the
expected nested loop execution plan
“from table A to index search table B”
when you change the syntax to A.key +
0. This syntax change would increase
the cost of the nested loop execution
plan “from table B to index search table
A,” but the database SQL optimizer may
select the second lowest cost execution
plan, which could be a hash join or a
sort merge instead of the nested loop
execution plan.

select * from A,B
 �where coalesce(A.key,A.

key) = B.key

A B
= A B

B A

Figure 11. Two-table join scenario

select * from A,B
 where A.key + 0 = B.key

12

How can we guide
the database SQL
optimizer to select
a preferred path
by rewriting the
SQL syntax?

For Microsoft SQL Server and IBM DB2
UDB, the following syntax will increase
the cost for a specific driving path.

Example: a three-table join

Now let’s use a three-table join
SQL statement to illustrate a more
complicated scenario.

For a three-table join SQL statement, the
database SQL optimizer will consider
all the permutations, which is 3!=6.
Assume that B→A→C is the lowest cost
path and therefore is the path selected
by database SQL optimizer. How can
we guide the database SQL optimizer
to select a preferred path by rewriting
the SQL syntax? If we want to guide the
database SQL optimizer to consider a
path from A→B→C, we can try the syntax
shown in Figure 13.

By changing the syntax to A.key + 0
and B.key + 0, three of the six table join
permutations have an increase in cost: C
→ B→A, A→C→B and B→A→C. This leaves
three remaining paths available for the
SQL database optimizer to consider:
A→B→C, B→C→A, and C→A→B. It will select
the path of our choice, A→B→C, only if
the estimated cost is the lowest cost;
otherwise, the database SQL optimizer
will opt for some other path.

With the lowering of the cost of today’s
CPU and memory, the database SQL
optimizer designers are able to lower the
cost of hash and sort merge joins, which
use more processing power and memory
than the nested loop join. This means
that database SQL optimizer will more
often select the hash or sort merge join
instead of taking the risk to do a nested
loop join, especially when the table size
is small.

A B

C

Figure 13. Rewriting the SQL syntax to guide the database SQL optimizer to select a
preferred path.

A B

C

Figure 12. Three-table join scenario

13

Transformation
rules can guide
the database SQL
optimizer as to how
it should use the
indexes for a specific
SQL statement.

Let’s review the rewritten SQL in Figure
14, which also contains an external
variable “A.f1=:VAR.”

Since the database SQL optimizer always
assumes that an external variable will
narrow down the first result set from a
table, the path VAR→A→B→C normally
should have the lowest cost.

INDEX USAGE

Transformation rules relating to
index usage

Transformation rules relating to index
usage are designed to guide the
database SQL optimizer as to how it
should use the indexes for a specific

SQL statement. Transformations include
enabling or disabling an index search, or
telling the database SQL optimizer to use
alternative indexes.

The two SQL statements shown in Figure
15 are quite often used in an online
query system in which the user inputs
values in a range from :c to :d to retrieve
data from a table. If a user does not
specify the range, the :c and :d values
will be null. Due to the complexity of
the SQL statement caused by using an
OR condition plus some undetermined
variables, the database SQL optimizer
will usually choose a full table scan to
process the SQL statement.

VAR A B

C

Transform

Example 1

Remark
This illustration assumes that emp_id is defined as NOT NULL and it is indexed. -1E9
is the lowest possible value and +1E9 is the highest possible value that can be entered
into emp_id based on the length of the field.

Transform

Example 2

Figure 14. Rewriting the SQL syntax to include an external variable

Figure 15. SQL statements commonly used in an online query system

14

Quest SQL Optimizer
also has rules for
different platforms
in order to deal with
the behavior of the
SQL optimizer for
each database.

For a SQL statement having multiple
indexes that can be used to search a
table, the transformation shown in Figure
16 can be used to enable any one of
the indexes.

To disable the index on the numeric
emp_id field, zero was added to the
field. This disables the index since zero
must be added to emp_id for each row,
requiring a full table scan or enabling a
different index to be used.

The same process is used for the
character field of emp_dept where
nothing, represented by '' (single quotes
with no value), was concatenated to
the field. This also disables the index
since the concatenate operation must
be performed for each row, thereby
requiring a full table scan or enabling a
different index to be used.

The other technique for disabling the index
is to use the COALESCE operation, which
in this case, does nothing to the value in
the field. Because it must be performed for
each row in the table, it disables the index
and causes a full table scan or enables a
different index to be used.

DEALING WITH THE BEHAVIOR
OF EACH PLATFORM’S SQL
OPTIMIZER

Quest SQL Optimizer also has rules for
different platforms in order to deal with
the behavior of the SQL optimizer for
each database. In order to understand
the theory behind some of these
transformations, you may need to
have an in-depth understanding of
database optimization theories, the
design approach to optimization each
database vendor has incorporated into
the database SQL optimizer, and the
platform-specific optimizer functions.

Transform

For Oracle Enable index search for emp_dept

Enable index search for emp_id

Remark
Since IBM DB2 UDB v8 and Microsoft SQL Server 2005 have stronger internal SQL rewrite abilities
in their latest versions, the coalesce (col,col) can be resolved by the database SQL optimizer during
parsing to a Case operation. Therefore, the index that you are trying to disable will remain in the
execution plan. A deeper nested coalesce (coalesce (col,col),col) can be used to overload the
parser and increase the specific cost weighting.

Transform

Transform

Transform

For DB2 and SQL Server

Figure 16. A transformation that can be used to enable any one of the indexes for a
SQL statement having multiple indexes that can be used to search a table.

15

For the nested loop
join case, the path
plays an important
role in determining
the speed of the SQL;
for hash join or sort
merge join cases, the
join path, may not be
that significant.

Here is a puzzling transformation: The
original SQL statement uses a range
scan of the employee table with the
condition “emp_id > 123456.” Both IBM
DB2 UDB and Microsoft SQL Server have
an intelligent algorithm that can preview
the value “123456” before the execution
plan is generated. Consequently, if

“emp_id>123456” returns a small subset
of records from the employee table,
the database SQL optimizer should
generate an execution plan that uses an
index search.

In contrast, if the SQL statement returns
almost all the records from the table, the
database SQL optimizer should generate
an execution plan using a full table scan
to save the time of retrieving extra index
pages. This works fine in most cases;
however, there are several factors that
can cause the database SQL optimizer to
make a mistake. Three factors are:

•	 The statistics are not up to date.

•	 The data distribution is so skewed that
the granularity of the histogram is too big
to handle.

•	 The costing algorithm fails to take
into account the configuration of
different machines’ I/O thru-put, CPU
processing, memory speed and other
system resources.

For Microsoft SQL Server, if you want
to rectify the problem, you can use the
INDEX hints to force the database SQL
optimizer to pick up an index. But for IBM
DB2 UDB, it is a little bit more difficult.

Let’s look at the transformations in
Figure 17, which use a dummy operation
COALESCE (123456,123456) or add +0 to
the literal 123456. The purpose of these
dummy operations is to hide the value
of 123456, so Microsoft SQL Server or
IBM DB2 UDB will not be able to see the
value while parsing the SQL statement.
Therefore, they will make a rough
estimation when they do not know the
actual value. Erring on the side of caution,
the database SQL optimizer will normally
select the execution plan that uses an
index search.

Transform

Example 1

Remark
Since IBM DB2 UDB and Microsoft SQL Server have stronger internal SQL rewrite abilities in
their latest versions, the coalesce (123,123) can be resolved by the database SQL optimizer
during parsing to a Case operation. Therefore, the index you are trying to disable will remain
in the execution plan. A deeper nested coalesce (coalesce(123,123),123) can be used to
overload the parser and increase the specific cost weighting.

Transform

Figure 17. Transformation in DB2 or SQL

16

Oracle provides a full
set of optimization
hints to help users
rectify individual
SQL performance
problems.

In modern RDBMS SQL optimizers, the
IN sub-query shown in Figure 18 can
normally be transformed to a join SQL
statement, which means the join path
can be either from A_B or B_A. For the
nested loop join case, the path plays an
important role in determining the speed
of the SQL; for hash join or sort merge
join cases, the join path, may not be
that significant.

The transformation rule shown in Figure
18, which adds a GROUP BY clause,
serves two purposes:

•	 The first purpose is to force the sub-
query to be processed individually. If
the original execution plan is a nested
loop join, after the transformation, the
execution plan will normally be changed
to a hash or a sort merge join.

•	 The additional GROUP BY function will
also trim down the result set from B key
(if B key is not unique) and the duplicate
records will be eliminated first. This will
sometimes help to improve join speed.

OPTIMIZATION HINTS

What are optimization hints?

Most database vendors provide
optimization hints to enable the user
to influence decisions made by the
database SQL optimizer as to which
execution plan to choose. Oracle
provides a full set of optimization hints
to help users rectify individual SQL
performance problems, making it the
most open of all the database platforms.
This approach admits the database SQL
optimizer cannot guarantee every SQL
will perform well.

Upgrading the database SQL optimizer
is a risky exercise for database vendors.
No matter how good a new version of the
database SQL optimizer is, it is going to
have some negative impact. For example,
if a new version of the database SQL
optimizer can fix 50 percent of old SQL
statements performance problems, but in
the meantime it introduces 5 percent of
all new performance problems for existing
good SQL statements, mathematically,
it is 10 times better than the old version.
It should be a good deal to commit to
the upgrade. Most systems are already
running on an “adopted” status, which
means users have accepted what they
have, they know which functions are
running slow, the database tuner may
already have changed the system
configuration to address the problems
and sometimes even the users’ daily
operations are changed to accommodate
those slow SQL processes.

If there are any changes after upgrading
to a new database version, I think you
will agree that a 50 percent improvement
will not stop the users from complaining
about the 5 percent of new problems.
So, that is why database vendors need
to provide optimization hints to let
users fix problems at the individual SQL
statement level and not at the database
SQL optimizer global level. This trend is
becoming more popular among database
vendors. Sybase Adaptive Server and
Microsoft SQL Server provide more
plan forces (like Oracle optimization
hints) in their new versions. IBM DB2
UDB does not provide any optimization
hints, but it does provide optimization

Transform

Example for all platforms

Remark
This transformation is valid only if there are no group, set or user-defined stored functions
call in the IN sub-query.

Figure 18. Transformation rule adding a GROUP BY clause

17

It is actually quite
often that the
database SQL
optimizer will not
follow your instruction
due to the limitation of
the SQL syntax.

classes to control the intelligence levels
of execution plans generated by the
database SQL optimizer. Unless the
database SQL optimizer can guarantee
that each execution plan it generates
is the best execution plan for each
unique database environment, we like
the approach that Oracle provides,
which gives us the opportunity to help
the database SQL optimizer choose
the best execution plan with the
optimization hints.

How hints work with
SQL transformation

Optimization hints are used to guide
the database SQL optimizer to select
a specific method preferred by the
user to process the SQL statement. But
sometimes the SQL statement’s syntax
prevents the database SQL optimizer
from using the method specified by
the user. In this case, the database SQL
optimizer will ignore the instruction given
by the user.

Let’s look at the examples in Figure 19.

In reviewing the execution plans, the
example in Figure 19 shows you that the
USE_MERGE hint does not cause the
Oracle SQL optimizer to generate a sort
merge join for this SQL statement. It is
actually quite often that the database SQL
optimizer will not follow your instruction
due to the limitation of the SQL syntax.
For complicated SQL statements, the
situation is even more complex as we
may not be able to tell whether the hints

will be used or how good the result will
be if the hint is applied.

Quest SQL Optimizer’s approach

This is why Quest SQL Optimizer takes a
different approach and does not follow
the knowledge-oriented SQL tuning
approach. The SQL Transformation
Engine will try most of the possible
combinations for rewriting the SQL
syntax, combined with optimization hints,
to explore the potential of a database
SQL optimizer.

QUEST SQL OPTIMIZER FORECAST

Is SQL optimization an
unsolvable problem?

In computability theory, there is a
famous decision problem called the
halting problem, which can be informally
stated as follows: Given a description
of a program and its initial input, this
determines whether the program,
when executing the input, will ever halt
(complete); the alternative is that it runs
forever without halting. In 1936, Alan
Turing proved that a general algorithm to
solve the halting problem for all possible
inputs cannot exist. It is said that the
halting problem is undecidable over
Turing machines.

Perhaps you find the halting problem
is similar to one of RDBMS SQL
optimization problems. Actually, there are
two major problems that modern RDBMS
SQL optimizers encounter today.

Figure 19.

18

•	 The limited size of the plan space (the
number of execution plans can be
investigated during SQL optimization)—
Because the database SQL optimizer
has to do real-time optimization, it
is impossible for the database SQL
optimizer to do an exhaustive plan
space search (search all possible
execution plans internally); otherwise,
the optimization time will be much
longer than the time it takes to execute
the SQL statement even with a bad
execution plan.

•	 The limited accuracy of the cost
estimation algorithm—After the
database SQL optimizer has generated
all the internal SQL rewrites and their
corresponding execution plans, the
database SQL optimizer uses the cost
estimation algorithm to choose the
theoretical best execution plan, the one
with the lowest cost, to execute. We
can use tables, indexes, histograms,
assumptions and other statistics to
estimate the cost of an execution plan.
The problem is lot to tell whether the SQL
will halt; rather, we are facing a more
difficult problem of determining how long
a query will run with a specific execution
plan. Database vendors have spent
a lot of effort in this area, but the fact
remains that we still have to tune SQL
statements ourselves.

Accurate cost estimation versus
plan space

The goal of a good database SQL
optimizer is not only to provide accurate
cost estimation for SQL statements, but
to generate more internal execution
steps to compose more execution plans.
More internal execution plans mean the
database SQL optimizer has a larger plan
space during SQL optimization.

The following is an example to show you
the relationship between plan space
and cost estimation. Consider how you
travel to your office and suppose you
only have one route to get there. If the
only way you go to the office is jammed
due to weather or traffic conditions, you
probably will not be able to get to your
office on time.

Consequently, most people have multiple
routes (plan space) in mind. Every
morning, based on weather and traffic
conditions, they select the best route
(cost estimation) to the office. The more
routes they have in mind, the higher
the possibility they can overcome more
complex traffic and weather conditions.

SQL1

SQL11

SQL111 SQLnn1

SQLn1

SQL2

SQL12

SQL112 SQLnn2

SQLn2

SQL3

SQL13

SQL113 SQLnn3

SQLn3

… SQLn

… SQL1n

… SQL11n … SQLnnn

… SQLnn

SQL

Hints permutation

The SQL
Transformation Engine
will try most of the
possible combinations
for rewriting the SQL
syntax, combined with
optimization hints, to
explore the potential
of a database
SQL optimizer.

Figure 20. How optimization hints work with recursive SQL transformation

19

The bigger the plan
space, the easier it
is for the optimizer to
select a non-optimal
execution plan.

The point is, with more possible
execution plans, every morning they will
spend more time thinking about which
path is the best way to go to their office.
As the number of routes increase, the
chance they select a non-optimal path
gets higher.

This problem is similar to what the
database SQL optimizer faces. The
accuracy of the database SQL optimizer’s
cost estimation is opposite to the size
of plan space that the database SQL
optimizer generates. The bigger the plan
space, the easier it is for the optimizer
to select a non-optimal execution plan.
That is why Oracle’s SQL statement
performance always has room for
improvement, since Oracle has a relative
larger plan space.

WHAT ABOUT A SELF-LEARNING
SQL OPTIMIZER?

At least two database vendors are trying
to build self-learning SQL optimizers.
The idea is to use actual statistics from
executed SQL statements to rectify the
future cost estimation of the same or
similar SQL statements. It seems like a
good idea, but you will find their self-
learning SQL optimizer is either turned
off by default or built as an individual
tuning advisor. Of course, we cannot
say they will not provide a better and
fully automatic solution in the future.
But the fact is this technology is not
mature enough today to be turned on
automatically. Furthermore, database
SQL optimizers have a lot of problems
pending that still need to be solved. They
should not just focus on the error of cost
estimation without taking care of the
small plan space problem.

To be frank, a self-learning database
SQL optimizer is still only a dream. Using
actual statistics to rectify future cost
estimation may solve some problems,
but it definitely cannot solve every SQL
costing problem. Furthermore, new
features will cause new problems. To
my understanding, what they are doing
is similar to providing a patch to the
existing cost estimation problem. It will
not fundamentally solve the database
SQL optimizer problem.

One possible solution to address the cost
and plan space problem is to build a SQL
tuning agent with a query base statistics
database that offloads the original SQL
optimizer from real-time optimization.
The agent should be running during
nonpeak hours to review all executed
SQL statements (or resource-intensive
SQL). For each SQL statement, the
agent should generate more execution
plans than the database SQL optimizer
generates, since the real-time SQL
optimizer cannot spend much execution
time during real-time optimization. For
each execution plan it generates, the
statistics can be collected by a test run
or partial test run of the query. Of course,
the database SQL optimizer still faces a
lot of problems today that would have to
be solved by a SQL tuning agent. But the
beauty of a SQL tuning agent is that it has
no response time limitation. Any complex
estimation or test run algorithm can be
built piece by piece in the agent.

THE ROLE OF QUEST SQL
OPTIMIZER IN THE FUTURE

As long as the database execution plan
space is being enlarged and more SQL
optimization controls are provided by
database vendors, users will have more
room to improve the performance of
their SQL and to maximize the power
of the database. Quest SQL Optimizer
will continue to play an important role
by helping users optimize their SQL
statements. Furthermore, database
vendors are becoming more aware of
the limitations of their SQL optimizer’s
intelligence. New features in the database
upgrades are normally coming out faster
than internal SQL optimizer upgrades.

Some examples, such as materialized
view rewrite, no statistics for user-defined
SQL function call by a SQL statement and
domain indexes, are more or less out of
step with the database upgrade speed.
I believe some topics cannot even be
solved within the next few years.

This is why most database vendors are
willing to provide users with more control
to optimize their SQL statements. Some
vendors are making it even easier to
control their database SQL optimizer

20

For Sybase Adaptive
Server, we provide
abstract plan tuning,
in which alternative
abstract plans are
generated for poorly
performing SQL.

without requiring a change to the source
code. It is a source-less SQL tuning
technique that is very important to
package users since they do not own
the source code. For example, Oracle
provides Stored Outlines and SQL
Profile; Sybase Adaptive Server provides
Abstract Plan; and Microsoft SQL Server
provides Plan Guide in Microsoft SQL
Server 2005. You can see that the
mainstream database vendors are going
in the same direction to help users tune
SQL without the need to change the
source code. But the problem is that
those new features are difficult to use
unless you have in-depth knowledge
of SQL optimization. I believe many
people cannot accurately guide the
database SQL optimizer to generate a
good execution plan for a complicated
SQL statement.

Since Quest SQL Optimizer is an external
SQL rewriter that relies only on the
feedback of the execution plan from the
database SQL optimizer, the Quest SQL
Optimizer Engine can generate alternative
syntax to influence the database SQL

optimizer to pick up a better execution
plan for a SQL statement. For Sybase
Adaptive Server, we already provide
abstract plan tuning, in which alternative
abstract plans are generated for poorly
performing SQL. Once you are satisfied
with a specific abstract plan, you can
save it with the SQL text into an Adaptive
Server database. The next time the
same SQL is received by the Sybase
Adaptive Server SQL optimizer, the stored
abstract plan will be used to generate
the expected execution plan. The beauty
of this approach is that users do not
need to change their source code: the
abstract plan can be changed any time
to accommodate database configuration
changes or upgrades. Package providers
can keep one source to fit different data
distributions for different size companies.

Similar technology can be implemented
into the Oracle and Microsoft SQL Server
platforms in the near future. It is a new
generation of source-less SQL tuning tools
that enable users to deploy their tuning
instruction for specific SQL statements
over various database environments.

21

TechBrief-SQLOptimizer-Secrets-US-KS-26229

ABOUT QUEST®

Quest helps our customers reduce tedious administration tasks so they can focus on the innovation necessary for their businesses to
grow. Quest solutions are scalable, affordable and simple-to-use, and they deliver unmatched efficiency and productivity. Combined
with Quest’s invitation to the global community to be a part of its innovation, as well as our firm commitment to ensuring customer
satisfaction, Quest will continue to accelerate the delivery of the most comprehensive solutions for Azure cloud management, SaaS,
security, workforce mobility and data-driven insight.

© 2017 Quest Software Inc. ALL RIGHTS RESERVED.

This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a software
license or nondisclosure agreement. This software may be used or copied only in accordance with the terms of the applicable
agreement. No part of this guide may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording for any purpose other than the purchaser’s personal use without the written permission of Quest
Software Inc.

The information in this document is provided in connection with Quest Software products. No license, express or implied, by estoppel
or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Quest Software products.
EXCEPT AS SET FORTH IN THE TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE AGREEMENT FOR THIS PRODUCT,
QUEST SOFTWARE ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY
RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL QUEST SOFTWARE BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF PROFITS, BUSINESS INTERRUPTION OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE
THIS DOCUMENT, EVEN IF QUEST SOFTWARE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Quest Software
makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves
the right to make changes to specifications and product descriptions at any time without notice. Quest Software does not make any
commitment to update the information contained in this document.

Patents

Quest Software is proud of our advanced technology. Patents and pending patents may apply to this product. For the most current
information about applicable patents for this product, please visit our website at www.quest.com/legal

Trademarks

Quest, SQL Optimizer and the Quest logo are trademarks and registered trademarks of Quest Software Inc. For a complete list of
Quest marks, visit www.quest.com/legal/trademark-information.aspx. All other trademarks and registered trademarks are property of
their respective owners.

If you have any questions regarding your potential use of this material, contact:

Quest Software Inc.
Attn: LEGAL Dept
4 Polaris Way
Aliso Viejo, CA 92656

Refer to our Web site (www.quest.com) for regional and international office information.

https://www.quest.com/legal/trademark-information.aspx

