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Tuning Problem
Secrets of Quest® SQL Optimizer

INTRODUCTION

For years, commercial database manufacturers have fought an 
endless battle to improve the performance of inserting, updating, 
deleting and retrieving information stored in the database. 
Despite their ongoing efforts and hard work, we have not seen 
a significant improvement in the performance of most relational 
database management systems (RDBMS): users still suffer from 
under-performing SQL statements, and database experts are still 
spending countless hours tuning SQL statements.

Quest SQL Optimizer provides a solution for improving SQL 
statement performance that an internal database management 
system’s SQL optimizer cannot provide. This paper explains how.

THE CHALLENGES WITH INTERNAL DATABASE 
SQL OPTIMIZERS

Major deficiencies cause the database’s internal SQL optimizer 
to fail to find a good execution plan for a SQL statement. Two 
of these deficiencies include inaccurate database statistics and 
SQL cost estimation of the resources that may be used for the 
SQL statement.

Statistics and index statistics may not be up to date.

Batch mode statistics collection and a near real-time data 
sampling technique are two common methods to collect 
database statistics. The batch mode statistics collection method 
processes a large set of data and uses system resources. This 



2

takes time to collect the data statistics. 
Consequently, these collections are 
normally executed during non-peak 
hours, when the systems administrator 
determines the statistics to update. If 
many INSERT or DELETE operations 
have occurred since the last collection 
of statistics, then these statistics will not 
reflect the most up-to-date information 
when a SQL statement is executed. This 
may cause the database SQL optimizer to 
generate a poorly performing execution 
plan for the current data distribution.

Fortunately, in the last few years, 
database vendors have improved 
the collection of statistics with a new 
real-time data sampling technique. This 
allows small amounts of data to be 
sampled for the statistics collection. 
This requires the data to be equally 
distributed so the sampling data can fully 
reflect the true data distribution. The 
batch mode statistics collection method 
is the alternative to generate accurate 
statistics for the database if the data is 
not equally distributed.

Cost estimation may not be accurate.

The second deficiency that causes the 
database SQL optimizer to select a poor 
execution plan is having inaccurate cost 
estimations. It is obvious that incorrect 
statistics will result in inaccurate cost 
estimation for a SQL statement. Even if 
the database statistics are accurate, the 
database SQL optimizer cannot correctly 

determine the best execution plan since it 
does not have all the pertinent information. 
Let’s examine the following SQL:

In this SQL statement, three tables are 
joined. We assume the database SQL 
optimizer will use a nested loop join only 
when all of the statistics are available 
for the tables and indexes used in this 
SQL statement. In this example, we find 
from reviewing the data that the driving 
path from table C→B→A (Figure 1) takes 
more time than that of the driving path 
A→B→C (Figure 2). But most of database 
SQL optimizers will pick up the driving 
path C→B→A. This happens because C.f2 
has a unique index and the database 
SQL optimizer does not know which 
values will be returned from C.key2. 
As you can see from this example, the 
data itself is determining the number of 
records retrieved and the cost to process 
the execution plan. The database SQL 
optimizer does not have this information, 
and therefore it cannot choose the best 
execution plan.

Even if the database 
statistics are accurate, 
the database SQL 
optimizer cannot 
correctly determine 
the best execution 
plan since it does not 
have all the pertinent 
information. 

Figure 1. The driving path starts from table C to table B, which matches four rows from 
table B. Then those four rows are matched to the rows in table A. The rows highlighted 
in gray in table B show the two records that caused extra scan operations using this 
driving path.

SELECT *
FROM A, B, C
WHERE A.key1 = B.key1
AND B.key2 = C.key2
AND C.f2 = 0
AND A.f1 = 0

Table A

A.f1 A.key1

0 a1

0 a2

1 b1

1 b2

2 c1

2 c2

Table C

C.key2 C.f2

a 0

b 1

c 2

d 3

e 4

f 5

Table B

B.key1 B.key2

a1 a

a2 a

a3 a

a4 a

b1 b

b2 b

C.f2 = 0
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THE CHALLENGE OF DESIGNING 
AN INTERNAL SQL REWRITE 
FUNCTION

Today, the internal SQL optimizer in most 
database management systems has a 
limited built-in SQL rewrite ability (see 
Figure 3). The internal rewrite is used 
to correct some obvious programming 
mistakes or to rewrite the input SQL to 
an internal SQL syntax. This internal 
SQL syntax will make the later stage of 
optimization easier for transforming an IN 
or EXISTS sub-query to a JOIN statement 
or making use of materialized views. 
Some databases have a weak internal 
SQL rewrite ability, which leaves room for 
database tuning experts to influence the 
database SQL optimizer to make a better 
choice in the later stage of the execution 
plan generation. Of all the databases, 
Oracle has the most open architecture 
to accept the user’s influence through 
use of optimization “hints.” Oracle is also 
the most syntax sensitive database that 
allows users to tune their SQL statements 
by restructuring the SQL syntax. 

In contrast, a database like IBM DB2 
UDB (Universal Database) has a very 
strong internal SQL rewrite ability. In IBM 
DB2 UDB, most SQL statements can be 
transformed into their internal SQL syntax 
before they are further optimized. This 
appears to be good news that would 
make it unnecessary for programmers 
to tune their SQL statements, since the 
database SQL optimizer would be doing 
the job for them. But the problem with 
this approach is that when the database 
SQL optimizer makes a mistake on a 
specific SQL statement, it is hard for the 
programmer to influence the database 
SQL optimizer to pick up other choices. 

This illustrates the dilemma that database 
engineers always face: Do they make the 
database smart, so it makes intelligent 
choices for the user? Or do they give 
the user the control, since the database 
SQL optimizer will not always make an 
intelligent choice?

Internal query rewrite

Generate execution plan

Estimate plan cost

Database query optimizer

Pick up the best plan 
with the lowest cost 
for execution

SQL Execution

Figure 3. Database SQL optimizer processing steps

Should database 
engineers make the 
database smart, so 
it makes intelligent 
choices for the user? 
Or do they give the 
user the control, 
since the database 
SQL optimizer will 
not always make an 
intelligent choice?

Figure 2. The driving path starts from table A to table B, which matches two rows. Then 
those two rows are used to match to the rows in table C. So with this driving path, no 
unnecessary table scans are performed. Though starting with a condition of lower 
selectivity, the overall scan operations are more optimistic.

Table A

A.f1 A.key1

0 a1

0 a2

1 b1

1 b2

2 c1

2 c2

Table C

C.key2 C.f2

a 0

b 1

c 2

d 3

e 4

f 5

Table B

B.key1 B.key2

a1 a

a2 a

a3 a

a4 a

b1 b

b2 b

A.f2 = 0
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HOW QUEST SQL OPTIMIZER 
SOLVES THE SQL PROBLEM

Quest SQL Optimizer mimics human 
SQL rewriting skills.

Quest SQL Optimizer is an external SQL 
rewriter that mimics human expertise 
to rewrite SQL statements to help 
the database's internal SQL optimizer 
make better decisions. A human expert 
may know more about the data in the 
database and its distribution. A database 
programmer with a good comprehension 
of SQL and its execution can rewrite 
a SQL statement to guide the internal 
database SQL optimizer to make a better 
choice among all its internally generated 
execution plans. Since the number of 

execution plans generated by the internal 
database SQL optimizer is limited by 
the syntax of the SQL statement, an 
experienced database tuner can rewrite 
the SQL syntax to force the internal 
database SQL optimizer to pick up a 
better execution plan.

Figure 4 shows how Quest SQL 
Optimizer mimics human SQL rewriting 
skills. Of course, a software program 
cannot know how to rewrite a SQL 
statement to the best syntax for a 
particular database environment, but  
Quest SQL Optimizer has the capability 
to try every possible rewrite (within the 
quota limits that you determine) and 
thereby find the best solution.

Recursive SQL 
transformation

Data dictionary

Generate execution plan

Eliminate duplicate 
execution plans

Cost elimination or 
physical test run

Problematic SQL

Rewritten SQL Pick up the best SQL 
and paste back to 
program source

Identify problematic 
SQL from 
program source

External SQL 
rewriter

Plan APlan E Plan CPlan GPlan I Plan BPlan F Plan DPlan HPlan J

Best plan 
for SQL1

Best plan 
for SQL2

Best plan for 
SQL3 & SQL5

Best plan 
for SQL4

SQL5 SQL4 SQL3 SQL2 SQL1

Figure 4. Quest SQL Optimizer is an external SQL rewriter that mimics human expertise 
to rewrite SQL statements to help the database's internal SQL optimizer make 
better decisions.

Figure 5. Relationships with SQL syntax changes and the execution plan generation

Quest SQL Optimizer 
mimics human 
expertise to rewrite 
SQL statements to 
help the database's 
internal SQL optimizer 
make better decisions. 
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CHANGING SQL SYNTAX TO 
IMPROVE SQL PERFORMANCE

Limitations of internal SQL 
rewrite functionality

Due to limitations in the database's 
internal SQL rewrite capability, it cannot 
transform a SQL statement into very many 
semantically equivalent SQL alternatives. 
Therefore, it is not possible for it to 
generate every possible way to rewrite 
a SQL statement. For example, assume 
that five SQL statements from SQL 1 to 
SQL 5 are semantically equivalent but 
syntactically different. The database 
SQL optimizer may generate a different 
set of execution plans accordingly (see 
Figure 5). For each set of execution plans 
(SQL 1 has Plan A, B, C), the database SQL 
optimizer will carry out a cost estimation 
and will execute the execution plan 
with the lowest cost. If the database 
SQL optimizer fails to select a good 
execution plan due to an inaccurate cost 
estimation or because it is limited by the 
number of execution plans generated, 
the corresponding SQL statement’s 
performance will be degraded.

In order to rectify this situation, a 
programmer can rewrite the original SQL 
multiple times. For each rewritten SQL, 
the database SQL optimizer creates a 
set of execution plans. Based on this 
new set of execution plans, the database 
SQL optimizer may select to use an 
execution plan that was not found in 

the original set of plans. If one of the 
execution plans from those rewritten SQL 
has better performance, the programmer 
can use the new syntax to replace the 
original SQL in the source to improve 
the SQL performance without changing 
the results. This is what we call SQL 
tuning without creating new indexes or 
database configuration changes.

SQL tuning experts may find that some 
rules of SQL syntax restructuring improve 
SQL statements in certain environments. 
For example, a nested loop join 
accessing a small table first and using an 
index search on a large table is normally 
better than joining the data from the large 
table to the small table. But for complex 
SQL statements with many table joins, 
a general rule like that may be hard to 
apply. This is especially true in situations 
with many join operations, where sorting 
and filtering methods are combined into 
one long and complex execution plan.

Quest SQL Optimizer’s Recursive SQL 
Transformation Engine

The Recursive SQL Transformation 
technology used in Quest SQL Optimizer 
simulates human SQL transformation 
techniques. It incorporates a set of 
transformation rules to transform SQL 
statements on a section-by-section basis. 
This replaces the trial-and-error method 
used by a person to rewrite the syntax of 
a SQL statement. 

The database's 
internal SQL rewrite 
capability cannot 
transform a SQL 
statement into very 
many semantically 
equivalent SQL 
alternatives.
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Each transformation rule in the 
optimization engine is independent from 
one another, like a capsule; the rule’s 
‘capsule’ can be opened only when all 
necessary conditions are satisfied (see 
Figure 6). This guarantees the semantic 
equivalence of the rewritten SQL 
statements so they produce the same 

results as the original SQL. When a SQL 
statement is transformed by one rule 
to produce a new SQL syntax, the new 
syntax may now satisfy the requirements 
of another rule; hence, transformation 
is carried out in a recursive manner 
(see Figure 7).

The Recursive SQL 
Transformation Engine 
replaces the trial-
and-error method 
used by a person to 
rewrite the syntax of a 
SQL statement.

Protector

Protector

Protector

Protector

Protector

Transform

Transform

Transform

Transform

Transform

Feedback queue & selector

SQL

Rules

Output transformed SQL

Figure 6. With Quest SQL Optimizer’s Recursive Transformation Engine, each 
transformation rule in the optimization engine is independent from one another, like 
a capsule; the rule’s ‘capsule’ can be opened only when all necessary conditions 
are satisfied.

SQL1

SQL11

SQL111 SQLnn1

SQLn1

SQL2

SQL12

SQL112 SQLnn2

SQLn2

SQL3

SQL13

SQL113 SQLnn3

SQLn3

… SQLn

… SQL1n

… SQL11n … SQLnnn

SQL

Figure 7. Chain effect of SQL transformation: when a SQL statement is transformed 
by one rule to produce a new SQL syntax, the new syntax may now satisfy the 
requirements of another rule; hence, transformation is carried out in a recursive manner.
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Example

Let’s take a look at the following SQL 
statement and use two of the built-in 
transformation rules used by Quest 
SQL Optimizer to see how this recursive 
transformation works. We will use one 
rule to transform the IN condition to an 
EXISTS condition and then use another 
rule that does the reverse, changing 
the EXISTS condition to an IN condition. 
We will illustrate this with the following 
SQL statement.

The first two levels of transformation are 
shown in the left side of Figure 8. SQL 
statements with syntax different from the 
original can be produced by following 
a set of transformation rules. You can 
see that for each rule applied to the 

SQL statement, the newly transformed 
SQL will satisfy another rule. The order 
in which the rules are processed can 
result in different SQL alternatives. In 
this example, the source SQL has 
gone through two transformation rules 
executed in a recursive manner. If we do 
not stop the recursive transformation, the 
loop will continue indefinitely. 

A total of four unique SQL statements 
(marked by the solid boxes in Figure 8) 
are generated by the two transformation 
rules. If each of these SQL statements 
ends up with a new execution plan, we 
potentially have three SQL statements 
that may give us different performance to 
be used as a benchmark to the original 
SQL statement.

SQL statements 
with syntax different 
from the original 
can be produced 
by following a set of 
transformation rules. 

IN to EXISTS

EXISTS to IN

EXISTS to IN

IN to EXISTS

Figure 8. A SQL statement being transformed by two recursive transformation rules

SELECT *
	 FROM A
		  WHERE A.C1 IN (SELECT B.C1
			   FROM B
				    WHERE EXISTS (SELECT ‘x’
					     FROM C
						      WHERE B.C2 = C.C2 ))
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The sole purpose 
for transforming 
the syntax of a SQL 
statement is to find a 
new syntax that can 
potentially influence 
the database SQL 
optimizer to pick up a 
better execution plan. 

Implementing a transformation rule 
requires a more complicated control 
than is shown in this illustration. For 
example, Quest SQL Optimizer has to 
check whether a set operator (UNION, 
MINUS or INTERSECT) is in a sub-query, 
whether multiple items are in the SELECT 
list, and much more. If these rules are self-
protected, it means the transformation and 
conditional checking are encapsulated 
into a one-rule capsule to prevent 
generating incorrect SQL statements (SQL 
statements that do not produce the same 
result as the original SQL). 

Quest SQL Optimizer’s Recursive 
Transformation Engine has a multitude 
of transformation rules that can handle 
very complicated situations. The result 
of the recursive transformation for a 
complex SQL statement may sometimes 
exceed what you can imagine. For 
example, some transformation rules 
can be applied endlessly to transform a 
SQL statement to another semantically 
equivalent statement without limitation, 
so quotas must be used to control the 
number of SQL alternatives generated 
and available in Quest SQL Optimizer.

SQL transformation rules provide 
semantic equivalence.

Since a computer cannot understand 
the relationship and meaning of data 
stored in a database, a software program 
cannot transform a logically clumsy SQL 
statement into a logically simple one. For 
example, the following SQL statement 

joins three tables to select the A* records. 
If a programmer tells you that table B is 
not necessary, the SQL can be rewritten 
into a SQL statement that eliminates table 
B and joins only tables A and C. 

If we review the syntax of the two SQL 
statements in Figure 9, we cannot 
determine that the two SQL statements 
are semantically equivalent. However, a 
programmer who understands the data 
can simplify the logic from a three-table 
join into a SQL statement with a two-
table join.

Quest SQL Optimizer uses 
transformation rules to transform SQL 
statements to other syntax that is 
semantically equivalent to the original 
SQL statement—that is, where the SQL 
alternative produces the same result as 
the original SQL statement. The sole 
purpose for transforming the syntax 
of a SQL statement is to find a new 
syntax that can potentially influence the 
database SQL optimizer to pick up a 
better execution plan.

Example: Quest SQL Optimizer’s 
transformation rules for correcting 
common errors

What are some examples of SQL 
transformation rules that are used in 
Quest SQL Optimizer? The common error 
rules are used to correct common, but 
inefficient, practices that programmers 
may use when creating SQL statements. 
Figure 10 shows two examples.

Figure 9. If a programmer tells you that table B is not necessary, the SQL on the left can 
be rewritten into a SQL statement that eliminates table B and joins only tables A and C.
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When there are many 
table operations in 
a SQL statement, 
there is no way for 
the database SQL 
optimizer to evaluate 
all possible paths for 
joining the tables. 

For Example 1 in Figure 10, the operation, 
+10, was applied to the emp_id column. 
This causes a full table scan since 10 
must be added to the emp_id value for 
each row of the table. By transforming 
the syntax to subtract 10 from the other 
side of the operation, it makes it possible 
for an index to be used.

For Example 2 in Figure 10, Quest SQL 
Optimizer will check the emp_id to 
determine if the column was defined as 
NOT NULL. If it is a NOT NULL field, the 
NVL function can be eliminated. This 
transformation may also eliminate a full 
table scan by making it possible for an 
index to be used.

JOIN PATHS

Why evaluating join paths 
is complicated

The join path is the order in which the 
data is retrieved from two or more tables. 
Theoretically, the database SQL optimizer 
should find the best path to join two or 
more tables for a given SQL statement. 
The problem is that when there are many 
table operations in a SQL statement, 
there is no way for the database SQL 
optimizer to evaluate all possible paths 
for joining the tables, given the limited 
amount of time it has to select an 
execution plan. Let’s take a look at the 
following SQL statement. It involves 
joining eight tables, and each table has a 
relationship with the seven other tables. 
If we consider only the Nested Loop 
join, the total permutation is 8!= 40,320 
possibilities. So, you can see it would 
take a long time for the database SQL 
optimizer to evaluate all possible paths.

I have seen a SQL statement (in an 
electric power company’s application) 
that involved more than a 13-table 
join. If you calculate all possible join 
paths, the permutation would be 13!= 
6,227,020,800. This would almost 
require a supercomputer to do an 
optimization before the execution of 
the SQL statement. Consequently, the 
database SQL optimizer does a rough 
estimation and runs the SQL immediately, 
which is much faster than trying to do a 
comprehensive analysis to find the very 
best table join path before beginning 
the execution.

Why join paths matter

The basic nested loop join operation 
is supported by most RDBMS since it 
requires less memory and temporary 
space. Normally, it provides faster data 
response time than other join operations. 
However, the path of a nested loop join 
will significantly affect the speed of the 
join operation. Let’s use a two-table 
join as an example to understand how 
this works:

select * from 
T1,T2,T3,T4,T5,T6,T7,T8
where T1.key=T2.key
and T2.key=T3.key
and T3.key=T4.key
and T4.key=T5.key
and T5.key=T6.key
and T6.key=T7.key
and T7.key=T8.key

Transform

Example 1

Transform

Example 2

Figure 10. Quest SQL Optimizer includes rules to correct common but inefficient 
practices in writing SQL.
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Quest SQL Optimizer 
is not attempting 
to directly find the 
best alternative 
SQL rewrite. 

If we focus on the Nested Loop join 
operation and assume these two tables 
are cached in memory, we can calculate 
the number of operations to retrieve both 
tables for the two possible join paths:

The path from table A to table B means 
that we open table A, looking at each 
row to then use an index to search for 
matching rows in table B:

Number of operations (A→B) = 100,000 * 
RoundUp(LN(1000) / LN(2)) / 2 = 100,000 * 
10 / 2 = 500,000

Where LN(1000)/LN(2) is the height of the 
B-tree for index of B.key, half the height 
is assumed as an average searching 
depth for a specific record from B.key.

The path from table B to table A means 
that we open B table, looking at each 
row to then use an index to search for 
matching rows in table A:

Number of operations (B→A) = 1000 * 
RoundUp(LN(100,000) / LN(2)) / 2 = 1000 * 
17 / 2 = 8,500

Where LN(100,000)/LN(2) is the height 
of the B-tree for index of A.key, half 
the height is assumed as an average 
searching depth for a specific record 
from A.key. 

According to the calculation, you will 
find that the path from B→A is around 
500,000/8,500, or ~59 times faster 
than the speed of A→B. This explains 
why some SQL statements with a wrong 
driving path can be tuned up to hundreds 
of times faster. 

Many programmers may have learned 
from experience to use the small table 
to drive a bigger table for a nested loop 
join produces faster results. When a 
SQL statement is simple and natural, it 
is likely a programmer will write the SQL 
statement using the best driving path. 

But in a real live application, the SQL 
statements can be far more complicated 
than a simple two-table join operation. 
For example, the key for both tables 
may not be unique. There may be some 
filtering criteria for both tables that make 
it so no histogram can be referenced. 
This makes it so that the database SQL 
optimizer cannot accurately estimate the 
cost of each join path. Human expertise 
is needed to solve the problem when the 
database SQL optimizer chooses a poor 
execution plan.

For other join methods, such as hash 
join or sort merge, the join path may not 
significantly affect the SQL speed for a 
two-table join. But in some situations, like 
those illustrated in Figure 1 and Figure 2, 
you may find that the join path still plays 
a major role in the performance of a 
SQL statement.

How to control the join path

The design concept used in Quest 
SQL Optimizer to apply recursive SQL 
transformation rules is different from 
common SQL tuning tools or human 
SQL tuning knowledge. Quest SQL 
Optimizer is not attempting to directly 
find the best alternative SQL rewrite like 
a human expert would. Quite frankly, 
no human knowledge can address all 
possible combinations of SQL syntax, 
hardware configurations and software 
configurations—or predict the behavior 
of the database SQL optimizer—to 
immediately know what the best SQL 
syntax is for a given SQL statement.

To control a join path, we cannot tell the 
internal database SQL optimizer which 
path is the best one to select. Instead, 
we add something to the syntax of the 
SQL statement that causes an increase to 
the cost of the current join path selected 
by the internal database SQL optimizer. 

select * from A,B	� Let’s assume that A.key and B.key are 
unique B-Tree indexed

   where A.key = B.key	 (assume B-tree has two nodes for each parent)
	 A table has 100,000 records
	 B table has 1000 records
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The rewriting of the 
SQL syntax is the 
only tool that can be 
used to influence 
the database SQL 
optimizer to pick the 
right path. 

Example: a two-table join

Let’s take a look at an example of a two-
table join scenario, shown in Figure 11.

If we consider the nested loop join, 
two paths can be considered by the 
database SQL optimizer, which are 
A→B and B→A. After the cost estimation, 
the database SQL optimizer may think 
that B→A has the lower cost, so, the 
database SQL optimizer will select the 
join path of B→A. If we know that the 
join path selected by the database 
SQL optimizer is not the optimal path, 
we should be given an opportunity to 
influence the database SQL optimizer to 
select another path. For some databases, 
like Oracle, if you know which path is the 
best, you can use the optimization hints 
to influence the database SQL optimizer 
to pick the right path. In some databases, 
such as IBM DB2 UDB, there are no 
execution plan hints available. Therefore, 
the rewriting of the SQL syntax is the 
only tool that can be used to influence 
the database SQL optimizer to pick the 
right path. 

Let us rewrite the following SQL syntax 
and assume that the datatype for A.key 
and B.key is numeric.

In Oracle and Sybase Adaptive Server, 
the index search of A.key on table A 
is disabled by changing the syntax to 
A.key + 0. The addition of +0 does not 
affect the value of A.key, but it does 
cause a full table scan on A table. The 
cost estimation of the join “from table B 
to index search table A” will be artificially 
increased by this new syntax. If the new 
cost is higher than the path of A→B, the 
database SQL optimizer will pick up the 
execution plan of “from table A to index 
search table B.”

In a real-life situation, the database SQL 
optimizer may not actually select the 
expected nested loop execution plan 
“from table A to index search table B” 
when you change the syntax to A.key + 
0. This syntax change would increase 
the cost of the nested loop execution 
plan “from table B to index search table 
A,” but the database SQL optimizer may 
select the second lowest cost execution 
plan, which could be a hash join or a 
sort merge instead of the nested loop 
execution plan. 

select * from A,B
     �where coalesce(A.key,A.

key) = B.key

A B
= A B

B A

Figure 11. Two-table join scenario

select * from A,B
    where A.key + 0 = B.key
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How can we guide 
the database SQL 
optimizer to select 
a preferred path 
by rewriting the 
SQL syntax? 

For Microsoft SQL Server and IBM DB2 
UDB, the following syntax will increase 
the cost for a specific driving path.

Example: a three-table join

Now let’s use a three-table join 
SQL statement to illustrate a more 
complicated scenario.

For a three-table join SQL statement, the 
database SQL optimizer will consider 
all the permutations, which is 3!=6. 
Assume that B→A→C is the lowest cost 
path and therefore is the path selected 
by database SQL optimizer. How can 
we guide the database SQL optimizer 
to select a preferred path by rewriting 
the SQL syntax? If we want to guide the 
database SQL optimizer to consider a 
path from A→B→C, we can try the syntax 
shown in Figure 13.

By changing the syntax to A.key + 0 
and B.key + 0, three of the six table join 
permutations have an increase in cost: C 
→ B→A, A→C→B and B→A→C. This leaves 
three remaining paths available for the 
SQL database optimizer to consider: 
A→B→C, B→C→A, and C→A→B. It will select 
the path of our choice, A→B→C, only if 
the estimated cost is the lowest cost; 
otherwise, the database SQL optimizer 
will opt for some other path.

With the lowering of the cost of today’s 
CPU and memory, the database SQL 
optimizer designers are able to lower the 
cost of hash and sort merge joins, which 
use more processing power and memory 
than the nested loop join. This means 
that database SQL optimizer will more 
often select the hash or sort merge join 
instead of taking the risk to do a nested 
loop join, especially when the table size 
is small.

A B

C

Figure 13. Rewriting the SQL syntax to guide the database SQL optimizer to select a 
preferred path. 

A B

C

Figure 12. Three-table join scenario
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Transformation 
rules can guide 
the database SQL 
optimizer as to how 
it should use the 
indexes for a specific 
SQL statement.

Let’s review the rewritten SQL in Figure 
14, which also contains an external 
variable “A.f1=:VAR.”

Since the database SQL optimizer always 
assumes that an external variable will 
narrow down the first result set from a 
table, the path VAR→A→B→C normally 
should have the lowest cost.

INDEX USAGE

Transformation rules relating to 
index usage

Transformation rules relating to index 
usage are designed to guide the 
database SQL optimizer as to how it 
should use the indexes for a specific 

SQL statement. Transformations include 
enabling or disabling an index search, or 
telling the database SQL optimizer to use 
alternative indexes.

The two SQL statements shown in Figure 
15 are quite often used in an online 
query system in which the user inputs 
values in a range from :c to :d to retrieve 
data from a table. If a user does not 
specify the range, the :c and :d values 
will be null. Due to the complexity of 
the SQL statement caused by using an 
OR condition plus some undetermined 
variables, the database SQL optimizer 
will usually choose a full table scan to 
process the SQL statement.

VAR A B

C

Transform

Example 1

Remark
This illustration assumes that emp_id is defined as NOT NULL and it is indexed. -1E9 
is the lowest possible value and +1E9 is the highest possible value that can be entered
into emp_id based on the length of the field.

Transform

Example 2

Figure 14. Rewriting the SQL syntax to include an external variable

Figure 15. SQL statements commonly used in an online query system 
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Quest SQL Optimizer 
also has rules for 
different platforms 
in order to deal with 
the behavior of the 
SQL optimizer for 
each database. 

For a SQL statement having multiple 
indexes that can be used to search a 
table, the transformation shown in Figure 
16 can be used to enable any one of 
the indexes.

To disable the index on the numeric 
emp_id field, zero was added to the 
field. This disables the index since zero 
must be added to emp_id for each row, 
requiring a full table scan or enabling a 
different index to be used.

The same process is used for the 
character field of emp_dept where 
nothing, represented by '' (single quotes 
with no value), was concatenated to 
the field. This also disables the index 
since the concatenate operation must 
be performed for each row, thereby 
requiring a full table scan or enabling a 
different index to be used.

The other technique for disabling the index 
is to use the COALESCE operation, which 
in this case, does nothing to the value in 
the field. Because it must be performed for 
each row in the table, it disables the index 
and causes a full table scan or enables a 
different index to be used.

DEALING WITH THE BEHAVIOR 
OF EACH PLATFORM’S SQL 
OPTIMIZER

Quest SQL Optimizer also has rules for 
different platforms in order to deal with 
the behavior of the SQL optimizer for 
each database. In order to understand 
the theory behind some of these 
transformations, you may need to 
have an in-depth understanding of 
database optimization theories, the 
design approach to optimization each 
database vendor has incorporated into 
the database SQL optimizer, and the 
platform-specific optimizer functions.

Transform

For Oracle Enable index search for emp_dept

Enable index search for emp_id

Remark
Since IBM DB2 UDB v8 and Microsoft SQL Server 2005 have stronger internal SQL rewrite abilities
in their latest versions, the coalesce (col,col) can be resolved by the database SQL optimizer during 
parsing to a Case operation. Therefore, the index that you are trying to disable will remain in the
execution plan. A deeper nested coalesce (coalesce (col,col),col) can be used to overload the 
parser and increase the specific cost weighting.

Transform

Transform

Transform

For DB2 and SQL Server

Figure 16. A transformation that can be used to enable any one of the indexes for a 
SQL statement having multiple indexes that can be used to search a table.
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For the nested loop 
join case, the path 
plays an important 
role in determining 
the speed of the SQL; 
for hash join or sort 
merge join cases, the 
join path, may not be 
that significant.

Here is a puzzling transformation: The 
original SQL statement uses a range 
scan of the employee table with the 
condition “emp_id > 123456.” Both IBM 
DB2 UDB and Microsoft SQL Server have 
an intelligent algorithm that can preview 
the value “123456” before the execution 
plan is generated. Consequently, if 

“emp_id>123456” returns a small subset 
of records from the employee table, 
the database SQL optimizer should 
generate an execution plan that uses an 
index search.

In contrast, if the SQL statement returns 
almost all the records from the table, the 
database SQL optimizer should generate 
an execution plan using a full table scan 
to save the time of retrieving extra index 
pages. This works fine in most cases; 
however, there are several factors that 
can cause the database SQL optimizer to 
make a mistake. Three factors are:

•	 The statistics are not up to date.

•	 The data distribution is so skewed that 
the granularity of the histogram is too big 
to handle.

•	 The costing algorithm fails to take 
into account the configuration of 
different machines’ I/O thru-put, CPU 
processing, memory speed and other 
system resources.

For Microsoft SQL Server, if you want 
to rectify the problem, you can use the 
INDEX hints to force the database SQL 
optimizer to pick up an index. But for IBM 
DB2 UDB, it is a little bit more difficult. 

Let’s look at the transformations in 
Figure 17, which use a dummy operation 
COALESCE (123456,123456) or add +0 to 
the literal 123456. The purpose of these 
dummy operations is to hide the value 
of 123456, so Microsoft SQL Server or 
IBM DB2 UDB will not be able to see the 
value while parsing the SQL statement. 
Therefore, they will make a rough 
estimation when they do not know the 
actual value. Erring on the side of caution, 
the database SQL optimizer will normally 
select the execution plan that uses an 
index search.

Transform

Example 1

Remark
Since IBM DB2 UDB and Microsoft SQL Server have stronger internal SQL rewrite abilities in
their latest versions, the coalesce (123,123) can be resolved by the database SQL optimizer
during parsing to a Case operation. Therefore, the index you are trying to disable will remain
in the execution plan. A deeper nested coalesce (coalesce(123,123),123) can be used to 
overload the parser and increase the specific cost weighting.

Transform

Figure 17. Transformation in DB2 or SQL
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Oracle provides a full 
set of optimization 
hints to help users 
rectify individual 
SQL performance 
problems. 

In modern RDBMS SQL optimizers, the 
IN sub-query shown in Figure 18 can 
normally be transformed to a join SQL 
statement, which means the join path 
can be either from A_B or B_A. For the 
nested loop join case, the path plays an 
important role in determining the speed 
of the SQL; for hash join or sort merge 
join cases, the join path, may not be 
that significant. 

The transformation rule shown in Figure 
18, which adds a GROUP BY clause, 
serves two purposes: 

•	 The first purpose is to force the sub-
query to be processed individually. If 
the original execution plan is a nested 
loop join, after the transformation, the 
execution plan will normally be changed 
to a hash or a sort merge join. 

•	 The additional GROUP BY function will 
also trim down the result set from B key 
(if B key is not unique) and the duplicate 
records will be eliminated first. This will 
sometimes help to improve join speed.

OPTIMIZATION HINTS

What are optimization hints?

Most database vendors provide 
optimization hints to enable the user 
to influence decisions made by the 
database SQL optimizer as to which 
execution plan to choose. Oracle 
provides a full set of optimization hints 
to help users rectify individual SQL 
performance problems, making it the 
most open of all the database platforms. 
This approach admits the database SQL 
optimizer cannot guarantee every SQL 
will perform well.

Upgrading the database SQL optimizer 
is a risky exercise for database vendors. 
No matter how good a new version of the 
database SQL optimizer is, it is going to 
have some negative impact. For example, 
if a new version of the database SQL 
optimizer can fix 50 percent of old SQL 
statements performance problems, but in 
the meantime it introduces 5 percent of 
all new performance problems for existing 
good SQL statements, mathematically, 
it is 10 times better than the old version. 
It should be a good deal to commit to 
the upgrade. Most systems are already 
running on an “adopted” status, which 
means users have accepted what they 
have, they know which functions are 
running slow, the database tuner may 
already have changed the system 
configuration to address the problems 
and sometimes even the users’ daily 
operations are changed to accommodate 
those slow SQL processes.

If there are any changes after upgrading 
to a new database version, I think you 
will agree that a 50 percent improvement 
will not stop the users from complaining 
about the 5 percent of new problems. 
So, that is why database vendors need 
to provide optimization hints to let 
users fix problems at the individual SQL 
statement level and not at the database 
SQL optimizer global level. This trend is 
becoming more popular among database 
vendors. Sybase Adaptive Server and 
Microsoft SQL Server provide more 
plan forces (like Oracle optimization 
hints) in their new versions. IBM DB2 
UDB does not provide any optimization 
hints, but it does provide optimization 

Transform

Example for all platforms

Remark
This transformation is valid only if there are no group, set or user-defined stored functions
call in the IN sub-query.

Figure 18. Transformation rule adding a GROUP BY clause
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It is actually quite 
often that the 
database SQL 
optimizer will not 
follow your instruction 
due to the limitation of 
the SQL syntax.

classes to control the intelligence levels 
of execution plans generated by the 
database SQL optimizer. Unless the 
database SQL optimizer can guarantee 
that each execution plan it generates 
is the best execution plan for each 
unique database environment, we like 
the approach that Oracle provides, 
which gives us the opportunity to help 
the database SQL optimizer choose 
the best execution plan with the 
optimization hints.

How hints work with 
SQL transformation

Optimization hints are used to guide 
the database SQL optimizer to select 
a specific method preferred by the 
user to process the SQL statement. But 
sometimes the SQL statement’s syntax 
prevents the database SQL optimizer 
from using the method specified by 
the user. In this case, the database SQL 
optimizer will ignore the instruction given 
by the user.

Let’s look at the examples in Figure 19.

In reviewing the execution plans, the 
example in Figure 19 shows you that the 
USE_MERGE hint does not cause the 
Oracle SQL optimizer to generate a sort 
merge join for this SQL statement. It is 
actually quite often that the database SQL 
optimizer will not follow your instruction 
due to the limitation of the SQL syntax. 
For complicated SQL statements, the 
situation is even more complex as we 
may not be able to tell whether the hints 

will be used or how good the result will 
be if the hint is applied. 

Quest SQL Optimizer’s approach 

This is why Quest SQL Optimizer takes a 
different approach and does not follow 
the knowledge-oriented SQL tuning 
approach. The SQL Transformation 
Engine will try most of the possible 
combinations for rewriting the SQL 
syntax, combined with optimization hints, 
to explore the potential of a database 
SQL optimizer.

QUEST SQL OPTIMIZER FORECAST 

Is SQL optimization an 
unsolvable problem?

In computability theory, there is a 
famous decision problem called the 
halting problem, which can be informally 
stated as follows: Given a description 
of a program and its initial input, this 
determines whether the program, 
when executing the input, will ever halt 
(complete); the alternative is that it runs 
forever without halting. In 1936, Alan 
Turing proved that a general algorithm to 
solve the halting problem for all possible 
inputs cannot exist. It is said that the 
halting problem is undecidable over 
Turing machines.

Perhaps you find the halting problem 
is similar to one of RDBMS SQL 
optimization problems. Actually, there are 
two major problems that modern RDBMS 
SQL optimizers encounter today. 

Figure 19. 
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•	 The limited size of the plan space (the 
number of execution plans can be 
investigated during SQL optimization)—
Because the database SQL optimizer 
has to do real-time optimization, it 
is impossible for the database SQL 
optimizer to do an exhaustive plan 
space search (search all possible 
execution plans internally); otherwise, 
the optimization time will be much 
longer than the time it takes to execute 
the SQL statement even with a bad 
execution plan. 

•	 The limited accuracy of the cost 
estimation algorithm—After the 
database SQL optimizer has generated 
all the internal SQL rewrites and their 
corresponding execution plans, the 
database SQL optimizer uses the cost 
estimation algorithm to choose the 
theoretical best execution plan, the one 
with the lowest cost, to execute. We 
can use tables, indexes, histograms, 
assumptions and other statistics to 
estimate the cost of an execution plan. 
The problem is lot to tell whether the SQL 
will halt; rather, we are facing a more 
difficult problem of determining how long 
a query will run with a specific execution 
plan. Database vendors have spent 
a lot of effort in this area, but the fact 
remains that we still have to tune SQL 
statements ourselves.

Accurate cost estimation versus 
plan space

The goal of a good database SQL 
optimizer is not only to provide accurate 
cost estimation for SQL statements, but 
to generate more internal execution 
steps to compose more execution plans. 
More internal execution plans mean the 
database SQL optimizer has a larger plan 
space during SQL optimization.

The following is an example to show you 
the relationship between plan space 
and cost estimation. Consider how you 
travel to your office and suppose you 
only have one route to get there. If the 
only way you go to the office is jammed 
due to weather or traffic conditions, you 
probably will not be able to get to your 
office on time. 

Consequently, most people have multiple 
routes (plan space) in mind. Every 
morning, based on weather and traffic 
conditions, they select the best route 
(cost estimation) to the office. The more 
routes they have in mind, the higher 
the possibility they can overcome more 
complex traffic and weather conditions. 

SQL1

SQL11

SQL111 SQLnn1

SQLn1

SQL2

SQL12

SQL112 SQLnn2

SQLn2

SQL3

SQL13

SQL113 SQLnn3

SQLn3

… SQLn

… SQL1n

… SQL11n … SQLnnn

… SQLnn

SQL

Hints permutation

The SQL 
Transformation Engine 
will try most of the 
possible combinations 
for rewriting the SQL 
syntax, combined with 
optimization hints, to 
explore the potential 
of a database 
SQL optimizer.

Figure 20. How optimization hints work with recursive SQL transformation
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The bigger the plan 
space, the easier it 
is for the optimizer to 
select a non-optimal 
execution plan.

The point is, with more possible 
execution plans, every morning they will 
spend more time thinking about which 
path is the best way to go to their office. 
As the number of routes increase, the 
chance they select a non-optimal path 
gets higher. 

This problem is similar to what the 
database SQL optimizer faces. The 
accuracy of the database SQL optimizer’s 
cost estimation is opposite to the size 
of plan space that the database SQL 
optimizer generates. The bigger the plan 
space, the easier it is for the optimizer 
to select a non-optimal execution plan. 
That is why Oracle’s SQL statement 
performance always has room for 
improvement, since Oracle has a relative 
larger plan space.

WHAT ABOUT A SELF-LEARNING 
SQL OPTIMIZER?

At least two database vendors are trying 
to build self-learning SQL optimizers. 
The idea is to use actual statistics from 
executed SQL statements to rectify the 
future cost estimation of the same or 
similar SQL statements. It seems like a 
good idea, but you will find their self-
learning SQL optimizer is either turned 
off by default or built as an individual 
tuning advisor. Of course, we cannot 
say they will not provide a better and 
fully automatic solution in the future. 
But the fact is this technology is not 
mature enough today to be turned on 
automatically. Furthermore, database 
SQL optimizers have a lot of problems 
pending that still need to be solved. They 
should not just focus on the error of cost 
estimation without taking care of the 
small plan space problem.

To be frank, a self-learning database 
SQL optimizer is still only a dream. Using 
actual statistics to rectify future cost 
estimation may solve some problems, 
but it definitely cannot solve every SQL 
costing problem. Furthermore, new 
features will cause new problems. To 
my understanding, what they are doing 
is similar to providing a patch to the 
existing cost estimation problem. It will 
not fundamentally solve the database 
SQL optimizer problem.

One possible solution to address the cost 
and plan space problem is to build a SQL 
tuning agent with a query base statistics 
database that offloads the original SQL 
optimizer from real-time optimization. 
The agent should be running during 
nonpeak hours to review all executed 
SQL statements (or resource-intensive 
SQL). For each SQL statement, the 
agent should generate more execution 
plans than the database SQL optimizer 
generates, since the real-time SQL 
optimizer cannot spend much execution 
time during real-time optimization. For 
each execution plan it generates, the 
statistics can be collected by a test run 
or partial test run of the query. Of course, 
the database SQL optimizer still faces a 
lot of problems today that would have to 
be solved by a SQL tuning agent. But the 
beauty of a SQL tuning agent is that it has 
no response time limitation. Any complex 
estimation or test run algorithm can be 
built piece by piece in the agent.

THE ROLE OF QUEST SQL 
OPTIMIZER IN THE FUTURE

As long as the database execution plan 
space is being enlarged and more SQL 
optimization controls are provided by 
database vendors, users will have more 
room to improve the performance of 
their SQL and to maximize the power 
of the database. Quest SQL Optimizer 
will continue to play an important role 
by helping users optimize their SQL 
statements. Furthermore, database 
vendors are becoming more aware of 
the limitations of their SQL optimizer’s 
intelligence. New features in the database 
upgrades are normally coming out faster 
than internal SQL optimizer upgrades.

Some examples, such as materialized 
view rewrite, no statistics for user-defined 
SQL function call by a SQL statement and 
domain indexes, are more or less out of 
step with the database upgrade speed. 
I believe some topics cannot even be 
solved within the next few years.

This is why most database vendors are 
willing to provide users with more control 
to optimize their SQL statements. Some 
vendors are making it even easier to 
control their database SQL optimizer 
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For Sybase Adaptive 
Server, we provide 
abstract plan tuning, 
in which alternative 
abstract plans are 
generated for poorly 
performing SQL.

without requiring a change to the source 
code. It is a source-less SQL tuning 
technique that is very important to 
package users since they do not own 
the source code. For example, Oracle 
provides Stored Outlines and SQL 
Profile; Sybase Adaptive Server provides 
Abstract Plan; and Microsoft SQL Server 
provides Plan Guide in Microsoft SQL 
Server 2005. You can see that the 
mainstream database vendors are going 
in the same direction to help users tune 
SQL without the need to change the 
source code. But the problem is that 
those new features are difficult to use 
unless you have in-depth knowledge 
of SQL optimization. I believe many 
people cannot accurately guide the 
database SQL optimizer to generate a 
good execution plan for a complicated 
SQL statement.

Since Quest SQL Optimizer is an external 
SQL rewriter that relies only on the 
feedback of the execution plan from the 
database SQL optimizer, the Quest SQL 
Optimizer Engine can generate alternative 
syntax to influence the database SQL 

optimizer to pick up a better execution 
plan for a SQL statement. For Sybase 
Adaptive Server, we already provide 
abstract plan tuning, in which alternative 
abstract plans are generated for poorly 
performing SQL. Once you are satisfied 
with a specific abstract plan, you can 
save it with the SQL text into an Adaptive 
Server database. The next time the 
same SQL is received by the Sybase 
Adaptive Server SQL optimizer, the stored 
abstract plan will be used to generate 
the expected execution plan. The beauty 
of this approach is that users do not 
need to change their source code: the 
abstract plan can be changed any time 
to accommodate database configuration 
changes or upgrades. Package providers 
can keep one source to fit different data 
distributions for different size companies.

Similar technology can be implemented 
into the Oracle and Microsoft SQL Server 
platforms in the near future. It is a new 
generation of source-less SQL tuning tools 
that enable users to deploy their tuning 
instruction for specific SQL statements 
over various database environments.
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