
The Product Manager’s Guide to Email
How to Build a Successful, Growing App with Email Notifications,

Alerts, Transactional Messages, and Other Product Emails

| 2

Growing Your App with Email

Email is part of daily life that’s easy to take for granted. In many ways,
it’s the backbone for all the information we receive.

Many of those emails are not interpersonal communication and
correspondence, or even marketing messages. They’re e-commerce
receipts, event or airline tickets, social network notifications, and
alerts from business apps. Mailboxes have become our de facto
system of record, and one that continues to grow in importance.

As users, we appreciate how email notifications from SaaS apps and
services help us keep tabs on our workflows and give us confidence
in the security of our accounts.

For product development teams, the messages their apps send are
an indispensable tool for generating user interest, building trust,
and nurturing long-term engagement. These product emails have a
dramatic impact on customer conversion and retention.

The email experts at SparkPost created this guide to email
notifications and other app-generated email messages to help
teams building fast-growing services make the most of email in
their products. It’s vital reading for product management and
development teams and anyone else looking for effective ways to
engage customers and build a growing app.

In this guide, you’ll discover:

•	 Key use cases and the kinds of emails users want to receive—
and how they can be used to increase conversions, generate
engagement, and reinforce trust and confidence in your app.

•	 How product teams can measure email performance and impact.

•	 The right way to implement emails for your app, as well as the
technical challenges and risks you’ll want to avoid.

Product emails and notifications have an outsized impact on
engagement, conversion, and retention. Let’s dig in.

| 3

Is your app sending email? If it’s not, it should be.

Let’s be clear what we’re talking about: messages generated and
sent by an application or web site in response to specific user action
or other event. Common examples of these app-generated emails
include activation and welcome messages, onboarding prompts,
activity reminders, receipts and shipping notifications, account and
security alerts, and even utilitarian functions like password resets.

These notifications serve an important purpose—alerting us when a
post was shared on social media, reminding us to take action on a
personal account, or asking us to approve payment for goods
and services.

Beyond these purely functional needs, notifications also are a
valuable (and often untapped) communication tool that enables
product teams to directly engage with their customers. They’re one
of the most influential tools that product managers have to drive
conversion, retention, and growth.

Does My App Need Email? Yes—And Here’s Why

Consider some of the benefits to your app:

•	 Emails are a persuasive instrument for drawing users back to
using apps that they might have forgotten about.

•	 Carefully designed, timed, and implemented notifications help
deliver a great user experience.

•	 Emails reinforce trust in services and help to build long-lasting
relationships between a SaaS business and its customers.

Let’s look at the situations where these emails will deliver the
most impact.

| 4

One or more onboarding messages are sent to help users
explore and get started with the product. Whether timed or
triggered by specific actions, these emails provide information
and prompt users to get up and running—and to accelerate their
pace to become active, engaged users.

User invites and shares are are a core email for consumer and
B2B apps alike. Both contribute to viral, word-of-mouth growth.
Explicit invitations asking colleagues to join a project team are
essential for many categories of services and are a notification
example that product teams must consider implementing.

Although shares are very often associated with social networks
and similar consumer services, they also have a place in many
B2B contexts. Document sharing and other forms collaboration
are common examples. It is worth noting that shares also play the
role of an implicit invitation to join when sent to a new user.

Activity reminders and notifications are an important tool for
alerting users to changes in workflows and for integrating in-app
activity with many users’ primary environment, their email inbox.
They also are an effective way of reengaging passive users who
might not be using the app on a regular basis.

These messages can be triggered by explicit events or sent on a
scheduled basis, depending upon the context. Typical examples
include reminders to complete a task or a summary of missed
social media notifications.

Key use cases for email in SaaS apps

Product emails are as diverse as the products that send them. The
messages sent by a social network obviously will be very different
from those sent by a service that helps airlines manage their fleets
of aircraft, maintenance schedules, and work orders.

Nonetheless, there are several types of emails that nearly every
SaaS product should send, customizing their functionality, style,
and tone to the needs of the business and its users. These key
product email use cases include:

Activation emails are sent as soon as a new user creates an
account. It’s the first email notification your users will receive,
and is a critical path step towards user activation. For many
services, users very literally cannot use the app until an account
has been activated by clicking a link in the email.

Activation emails serve to verify that the email address the user
provided is valid and working. They also remind users that they
chose to sign-up for your product, an important step in making
the difference between a genuine user and a “drive-by” signup.

Welcome and onboarding messages are sent once a user has
verified their email address to activate a new account. Most
often, a welcome message is sent as soon as an account has
been activated. Welcome messages reinforce a service’s core
promises, set the tone for future interactions, and say thanks
for joining.

| 5

Reports and dashboards are especially important for B2B
services. The information they contain is essential for users and
their teams to keep tabs on the business processes they manage.

Like other forms of activity notifications, these messages
reinforce engagement for users who may not be active in the app
itself. And well-designed reports and dashboards are an effective
way of explicitly reminding users and their executive decision-
makers of a service’s value.

Password resets and two-factor authentication are examples
of utilitarian notifications that every app must implement reliably.
Like activation emails, they’re quite literally the sort of product
email can make or break a user’s ability to use a service.

Security and account alerts are an essential aspect of helping
users to protect their accounts. They’re a crucial bulwark
against fraud, misuse, and the theft of sensitive information
and credentials.

Where emails move the needle

Users value notifications when they’re
relevant, but quickly learn to ignore,
delete, or even flag as spam messages
that are repetitive or don’t add value to
how they interact with an app.

But that still leaves a question for product teams. Deciding where to
begin with product emails can be daunting. It’s important to make
strategic choices about which to send, and how often.

Identifying your product’s key “make-or-break” moment are
powerful places to begin. Make-or-break moments are the junctures
where user activity (or lack thereof) can mean the difference
between success and failure. They’re also where product teams have
an opportunity exert the most dramatic leverage to improve the
user experience and directly improve core business metrics.

The right email notification at these moments can help keep a
user engaged and productive. On the other hand, a missing or
ineffective email may well result in a missed opportunity and even
customer churn.

Consider two very literal examples of this sort of critical message:
activation emails and password resets. Both require direct,
immediate action from a user to continue their usage of an app.
But if the email is not effective or is delayed or even lost, the
consequence may well be a permanent loss of that user.

Beyond this sort of blunt scenario, there may be more subtle
moments that have outsized impact on your users’ success. Starting
with the common use cases we described earlier, identifying and
addressing them is crucial to your success. They’re ideal candidates
for the right sort of product email.

So, what are yours?

| 6

It Takes More Than a Send Button to Deliver App Email

We’ve seen how crucial emails like onboarding messages, email
notifications, security alerts, and other product emails are to the
success of SaaS applications. But when emails are ineffective, lost, or
delayed, the result may well be user churn.

Sending email from an app isn’t quite like opening Gmail and
pressing the send button.

In fact, operating infrastructure for generating, sending, and
measuring email is a surprisingly complex challenge—especially at
the scale and performance a SaaS product requires.

Why delivering SaaS email is challenging

In its basic form, email seems so simple; sending an email message
to your user takes nothing more than pushing “send” (or making the
equivalent call in the programming language of your choice).

For SaaS email notifications, your team’s developer might assemble a
few lines of a message in their code, add a subject line and a sender
address, and call the send function. The message shows up in their
inbox when they test it, it looks like what they assembled, and they
move on to the next part of their code.

The difficult challenges come when things start to scale. What the
developer didn’t realize is that while mail delivery is a trivial task
when sending one message here or there, the Internet service
providers (ISPs) who host most consumer mailboxes—services such
as Gmail, Microsoft, and AOL—become much more picky when
you send thousands of messages at a time. In order to protect their
customers from spam, they’ll often divert unusual, high-volume
bursts of traffic from the inbox to the spam folder.

So consider what happens when a SaaS product begins to grow.
The volume of email notifications suddenly increases, and ISPs react
by slowing or even blocking delivery of the new messages. When
those key alerts such as welcome emails or account verifications
never arrive in the inbox, the user experience suffers and introduces
roadblocks to continued growth.

Fortunately, there’s a better way. Read on to learn how.

| 7

Why an email API?

An email API gives apps access to the functionality available in an
email platform, such as generating and sending transactional emails,
manipulating templates, and enabling access to email metrics.

API-generated email is an easy fit for how most product and
development teams already work. That alone might be reason
enough for you to choose this approach, but there are additional
reasons as well. In particular, sending email at volume and with the
performance characteristics SaaS products require is a challenge
most teams shouldn’t take on internally.

Traditional email infrastructure doesn’t scale well, and as we’ve
discussed, managing issues with ISP mailbox providers like Gmail
and Outlook is a specialized expertise for which very few teams
are prepared. Troubleshooting email server uptime and delivery
headaches is a distracting and expensive task for engineering and
ops teams to take on.

That’s why most teams building SaaS applications implement their
email notifications and other messages by relying a cloud email API.

Using an email API to send email from your app

Email notifications and transactional emails are a perfect use case
for an email API. In general, the process of generating and sending a
notification or transactional email with an email API looks something
like this:

A user takes an action or some other event occurs. Perhaps it’s
something the user did explicitly like creating an account or resetting
a password. Or it could be triggered indirectly, such as a change in a
workflow process or a summary of activity by other users.

| 8

There’s more to email than sending

In fact, that data-driven quality is a really important part of
working with an email API. You’ll want access to a dashboard
for summary reporting, but programmatic access to important
metrics is just as important.

Understanding the data generated by email engagement is a
crucial part of ensuring messages like email notifications are
effective. Read on to learn how to measure the performance of
product emails like these.

In either case, you want the user to take action to accomplish a task
or reengage with your app. You’ve specified that an email be sent
with relevant information to help the user accomplish that goal.
The process looks something like this:

1.	Your app calls the email API and provides such information
as the customer email address, the message content, and
other details.

2.	The email service creates a message with that info, using a
template that has already been established for that specific
purpose. (For example, you probably want an onboarding
email to look and read differently from a password reset email,
given what a customer likely expects in each situation.)

3.	The email service transmits the message, negotiating the
protocols required to ensure the email is delivered into the
customer’s inbox.

4.	The email service captures data about the delivery of the
message, if it was opened, if the recipient clicked any of the
links in the email, and more.

There’s no email expertise required—your team can continue to
focus on building your app, and you can work with the results and
data to understand and drive your user engagement.

| 9

Are Your App’s Emails Working?

We’ve discussed several key use cases for product emails. But simply
sending those isn’t enough—knowing how users interact with them is
a crucial. As we’ve learned, when product emails aren’t effective, an
app’s users are likely to churn.

So, accurately measuring how notifications affect an app’s
performance is a must-do. Unfortunately, it’s all too common for
product teams to have limited visibility into what happens once a
message is sent. Data about something so critical to your product’s
success shouldn’t be left to chance.

Assessing the impact of product emails should be considered
with two lenses:

•	 Did the email immediately drive a specific, desired action?

•	 Did the email contribute to user engagement, conversion
and retention over time?

These questions both are important, but they require different
sorts of data and analysis. Fortunately, email is both measurable
and flexible.

Basic product email metrics

Email is usually rich with data. Consider, for example, how many
messages were delivered, rejected, opened, read, and clicked.
With well-designed email infrastructure, these and many more
metrics can be retrieved on a per-message basis, reported in
aggregate analytics, or even sent in a structured data stream for
more sophisticated analysis.

| 10

There are dozens of notification data points product teams can track (the SparkPost email API offers more than 35 individual metrics).
Some of the most fundamental metrics for product emails include:

Comments
Goals for Email

Notifications

Bounces
High bounce rates are a red flag to ISPs and have a significant effect on how they

treat your messages.
1%

Latency
What matters most is your user’s context: did the message arrive when they

expected it and could act upon it?
< 1 minute

Inbox placement
Each email that doesn’t reach the inbox is a risk factor for customer

disengagement and churn.
98%

Open rate
If you’re seeing fewer than 1 in 3 of your notifications opened, then you’re risking

user fatigue by sending unwanted or unengaging messages. Dial it back and think

about how to improve them.

> 50%

Click-to-open rate (CTO)
Ideal CTO rates vary. They depend upon the nature of the notification (e.g., is it

informational or are you seeking to drive action)? But if the rate is consistently

low, it’s time to rethink the content and call to action of your notifications.

40%

Unsubscribes
Some of your users will want to opt out of email notifications. Don’t fight it—make

it easy for your users to take control.
< 10%

| 11

With the right data, your teams can capture and monitor both
technical performance (i.e., how well the email infrastructure is
operating) and engagement results (i.e., how users respond to the
message). And you can act on that data to improve app engagement
and performance.

Understanding product email performance

Let’s look at a typical SaaS application email. What’s the basic reason
your app is sending an email? It’s because your user has done
something, and you need them to take an action to complete the task.

Account signup is a common example:

1.	A user signs up for an account

2.	You need the user to confirm her or his email address
to complete the signup and activate the account

It seems a straightforward task. Certainly, it it is among the make-or-
break moments we described earlier, and making sure that the email
driving it works is essential to helping your user succeed… not churn.

But the journey this message must traverse isn’t always as simple as
it seems. Consider the multiple checkpoints at which something
could go off the rails:

•	 Triggering event. Something happened in your app or an
external service to trigger a notification event. Did you capture
that moment and uniquely identify it for future analytics?

•	 Generation. Did your app or a dedicated service (sometimes
called an “email API”) create a properly formed message, with
correct and personalized content? Does the message contain
the unique identifiers you’ll need to connect subsequent actions
back to the original event?

•	 Submission. At the stage, the message officially has become
an email and placed in the care of a mail transfer agent
(MTA)—more colloquially known as a mail server. An MTA well-
architected for the needs of product emails—that is to say, one
that’s designed for API-driven email—will introduce almost no
latency to the process, but mail servers designed for passing
messages from traditional email clients or marketing lists very
often queue messages for later transmission. Depending upon
the load, that delay might be substantial.

| 12

•	 Transmission. The actual sending of an email can be affected by
network conditions, email infrastructure capacity, and a variety of
other technical factors. But the most visible issue for most of us is
whether the message “bounced,” that is to say was rejected by
the destination mail server, or was accepted. Bounces happen for
a variety of reasons, but among the most common is an invalid
email address.

•	 Delivery to the inbox. Not bouncing doesn’t necessarily mean
it’s sitting in your user’s inbox. Most email providers like Gmail
or Outlook run additional, proprietary algorithmic checks to
predict how recipients react to your message before deciding if it
deserves to be in the inbox, some other folder or tab, or even the
spam folder.

•	 Open. Did your user open the message? Details like the
wording of a subject line or the return address can make a major
difference in whether a user responds, ignores—or even flags a
message as spam. Empirical approaches such as A/B testing are
the best way to optimize this engagement.

•	 Click. Once opened, did the user take action? A direct click on a
properly tagged link will make that connection explicit. As with
subject lines, testing of message body design, images, content,
and calls to action are essential.

•	 Resolution. Did the user actually complete the task at hand?
That’s what really matters. A closed-loop connection from initial
triggering event to resulting action provides product teams
definitive information about the effectiveness of their notifications.

Where to improve performance

The wealth of data provided by email APIs and similar infrastructure
provides visibility into a product email’s journey. It also helps product
teams to identify where to optimize its performance.

•	 Review how messages are assembled. Closely monitoring the
performance of your code is a good way to improve the latency
of your message assembly and submission system.

•	 Choosing performant email infrastructure. Additionally, using
an email API system can boost your performance. By offloading
the message generation from your own systems, this method
can help to reduce delivery time and maximize your efficiency.

•	 Focus on user actions. Did the notification drive the user
actions that a product team needs, specifically improving
engagement? By monitoring which actions a user has performed,
product teams can gauge which are most attractive to users and
adjust their strategy accordingly.

•	 Look at email technical best practices. To ensure that an email
actually makes it to an inbox, product teams should focus on a
checklist of items such as sender reputation, IP address warming,
feedback loops and subject lines.

| 13

Keeping Your Users Safe

You already know how essential robust security is for your SaaS
application. Your team has followed security best practices:
training, code reviews, third-party penetration testing, secured your
infrastructure, certification, and more.

And yet your efforts mean little if your user’s credentials are stolen.
One common approach bad guys take is to impersonate your email:
a phishing attack. A malicious third party sends your users an email
that looks like it came from your application. A link in the email
takes users to a website resembling your own and requests their
username and password to log in. User information like passwords
or account numbers can be stolen—and attackers have access to
your application.

It’s clear that phishing attacks and similar abuses of your app could
result in customers losing trust in your service.

What can you do to combat this? It’s a complex challenge, but user
education is certainly part of the answer; by following best practices
for security notifications, you’ll help your users be alert to unusual
situations. In addition, properly implementing technical standards
that help ensure your users never receive faked notifications is an
important part of the solution.

Let’s look at each in turn.

Best practices for security notifications

As with so many aspects of user engagement, user attitudes and
behaviors are critical to the security of a SaaS product. Security
alerts and notifications are one important part of developing and
reinforcing user trust.

To be effective, product teams developing security notifications for
their apps should consider how their alerts can (1) help users make
good decisions about security-related issues and (2) convey the
information users need to have confidence in the product or service.

Here are five best practices to consider when developing effective
security alerts and notifications.

| 14

Give users clear, helpful information. When it comes to security
alerts, don’t beat around the bush. Be direct with your messaging
and clear about why the alert was sent—avoid explicit marketing or
brand messaging. The last thing a user needs is to feel like they’re
being sent an advertisement when they’re worried about a sensitive
subject. And be sure to include links to relevant support resources
on your web site.

Quickly notify users about unusual account activity. You’ve
probably used services that add extra layers of security that go
beyond a simple login screen when a user logs in from a new
device or location—perhaps you’ve been asked for a second factor
or verification code. And even when a login is successful, many
high-risk services (such as social networks) will immediately sends
post-login emails to all addresses associated with the account,
along with in-app notifications. That’s a practice more SaaS apps
should emulate.

Take extra care with password resets. What can you do to ensure
password resets aren’t compromised? First, don’t allow password
resets without secondary confirmation in the form of an email or
other alert. It’s not foolproof, but that extra step can eliminate one
group of lazy attackers.

However, that practice is one reason password resets and similar
alerts are a prime target for phishing attacks. It’s here that technical
best practices such as email authentication (see below) are
essential. Certain design considerations, such as providing clearly
recognizable URLs can also reduce the risk.

Be mindful of actions that make users nervous. Even the savviest
Internet users can hesitate when making a change to how they
conduct business online. For example, if your service offers a new
option that will make transactions more convenient for customers,
they may still be a little nervous about the implications of that change.

Providing transparency about what’s being asked of the user, giving
them advance notice well before the actual change, and providing
in-app explanations can all go a long ways towards reducing
apprehension about change.

Treat security as an ongoing part of the user experience.
Onboarding messages and product updates that highlight security
features can be helpful to simply let users know you’re proactive
about this important area of concern. They help reinforce the overall
trust a user has for a service.

Email authentication basics

In addition to effective alerts and notifications, SaaS teams should
implement key email authentication standards to help keep users safe.

Email authentication is a technical solution to proving that an email
is not forged. In other words, it provides a way to verify that an email
comes from who it claims to be from. Email authentication is most
often used to block harmful or fraudulent uses of email such as
phishing and spam.

| 15

There are several different approaches to email authentication, each
with its own advantages and disadvantages. Although the specific
technical implementation varies from approach to approach, in
general, the process works something like this:

1.	A business or organization that sends email establishes a
policy that defines the rules by which email from its domain
name can be authenticated.

2.	The email sender configures its mail servers and other
technical infrastructure to implement and publish these rules.

3.	A mail server that receives email authenticates the messages
it receives by checking details about an incoming email
message against the rules defined by the domain owner.

4.	The receiving mail server acts upon the results of this
authentication to deliver, flag, or even reject the message.

As these steps make clear, in order for this process to work, the
sender and the receiver both must participate. That’s why technical
standards for email authentication are so important: they define a
common approach to defining the rules for email authentication
that a SaaS provider (or any other organization) can implement.

Properly configuring email authentication standards like SPF, DKIM,
and DMARC is one of the most important steps you can take to
safeguard your app’s reputation. (You can learn more about these
important standards on our web site.)

Taking proper email authentication measures also have another
benefit: they can help improve your ability to get notifications
and other critical product emails to your users’ inboxes. That’s
because email authentication can help make it more likely that the
IP addresses and sending domains for your email will be trusted by
receiving mail servers.

Email authentication protects your SaaS product’s brand and domain
reputation from spammers and spoofers. It also improves the
likelihood your users will see the messages your app sends. That’s a
win-win for you and for your users.

| 16

Meet Your Email Team

The emails your app sends—notifications and the like—are a core
responsibility of SaaS product teams. These emails are an extension
of the product and should be treated as such.

In the case of app-generated email notifications, you’ll find your
team looks a lot like a classic, three-legged stool. In fact, these roles
probably already make up the core of your product team.

Product Manager. That’s you! It’s your job to define the requirements
for a product email team for a simple reason: the most successful
SaaS businesses treat email notifications as a core product feature.

Larger, complex products and platforms may well have a product
manager dedicated to developing a shared app notification service
that includes email alongside other forms of communication like
SMS or push.

Technical Lead. Perhaps a developer or an architect, the tech lead
works with the product manager to design and build the services and
technical foundation that will trigger, generate, and process data from
email notifications.

Working with a team of developers, a notifications teach lead’s
core responsibilities include ensuring that reliability, scalability, and
perhaps security considerations for product emails are addressed.

Growth or Product Marketer. As with other aspects of building a
growing SaaS product, growth and product marketers increasingly
work closely with product leadership to optimize user engagement.
These marketers can help fine-tune the messaging, design, and pace
of app emails. They should also use rich data from the emails to
better understand and nurture user actions and engagement.

If you’re building notifications with the help of an email API, these
roles might provide the skillsets you need to get started.

Some larger-scale services that send a lot of email probably need
to fill additional roles. And if your business still operates its own
infrastructure and email servers, you’ll definitely need to think about
the extra hands you’ll need on deck.

Infrastructure Admin, Ops, and Security. Email servers are
especially susceptible to scalability, security, and downtime
challenges—even more so when dealing with the performance
characteristics needed for product email notifications.

That’s why a product email team understands the trade-offs and
make an informed choice about managing infrastructure themselves
versus relying on an email API. It also goes without saying that a
good DevOps and security team will help you ensure your apps’
emails aren’t putting you at risk of phishing and fraud.

| 17

Deliverability Manager. Email deliverability managers are
specialized professionals who understand the ins and outs of working
with email and mailbox providers like Gmail. Deliverability pros are
great resources to help you plan the implementation of an email
notifications strategy—and what it takes to get email to the
inbox on time.

In fact, if you’re looking for help getting started, a good email
delivery service will have great email deliverability pros to provide
advice and extra help at the get-go.

| 18

As a product leader, you know how crucial user engagement is to
driving conversion and retention and reducing churn. We’ve shown
how onboarding messages educate users and help them get started
using apps. Notifications and alerts earn attention and drive action.
Account and security alerts build confidence and trust.

But email to deliver on those promises, product teams must
approach email as a strategic initiative that’s fully integrated into
a product plan, not an afterthought. It requires care in finding use
cases with maximum leverage and impact. It needs a performant
infrastructure that’s suited to the unique requirements of
app-generated email. It entails ensuring that technical configuration
and security needs are properly addressed. And it works best when a
product team has the support it needs.

We hope this guide has helped you think about how effective emails
are for supporting a great user experience and helping to drive the
sort of engagement that will help you deliver a growing, successful
application and business.

Learn More and Build a Better App with Email

Further questions about SaaS and email? Visit the SparkPost
Academy, with resources that go deep on email technical best
practices, user engagement, cloud development practices, and
customer growth. It’s valuable information that’ll help you build a
great product and your career. Dig in at sparkpost.com/academy

About SparkPost

Development and product teams want to build great apps, not
manage email servers. SparkPost’s email API delivers fast, flexible
email and analytics integration for any application or website.
SparkPost delivers your application’s emails on time and to the inbox.

SparkPost is the most performant email delivery service—whether
your app or web site sends hundreds, or billions, of messages. Our
customers send over 3 trillion messages a year—more than 25
percent of the world’s non-spam email.

Talk with our team @SparkPost or

go to sparkpost.com to learn more.

SparkPost.com • 301 Howard St., Suite 1330 • San Francisco, CA 94105 • tel +1 415-578-5222 • toll free usa 877-887-3031
©2018 GD_ProductEmail_0118

It’s Time to Get Started

